Next Regular Expression Mastery 1 Next Regular Expression Mastery

Regular Expression Mastery Regular Expressions

M. J. Dominus < Regexes (not Regexps)
Plover Systems Co ; ® Also calledpatterns
> * ® Very useful in Perl

nj d-t pc- r egex- @l over.com
m REGEX/

v1.09 (September, 2003) s/ REGEX/ STRI NG (left part only!)
split /REGEX/, STRING

grep / REGEX/, LIST

® Powerful, dangerous, risky

Next X<YA Copyright © 2003 M. J. Domint

® Almost everyone has been unpleasantly surprised at one time or another

Next %Q’ 7

Copyright © 2003 M. J. Domint

Next Regular Expression Mastery

3 Next Regular Expression Mastery

What We'll Do

® How regexes work on the inside
® Typical pitfalls

® How to avoid pitfalls and make regexes faster

Big Secret

® Regex matching is like a machine
running a program

The machine is very simple, and alwd
does the same thing ,

The regex is the program, and varies
machine’s behavior a little

YA

Next

Copyright © 2003 M. J. Domint
® To understand regexes, you need to

understand the machine

The machine is called tHRegex Engine

YA

Next Copyright © 2003 M. J. Domint

Next Regular Expression Mastery

5

Next

Regular Expression Mastery

Regex Programs
® Made ofnodes
® Each has a pointer to the next node
® Node says what to match

® For example:

/ ab/

Dosart ———a a

——= end -

Next <f{><° 7

Copyright © 2003 M. J. Domint

Regex Program Example

Lostart ——a

/ ab/

|——= end

® \What does this mean?

® How is the target stringb matched by this regex?

START
a
b
END

I
I
<
<

LY

>

(e oo ey

Yes!
Yes!
Yes!

® \We reachedND, so the match succeeds; it found dhe

Next

9.

>

&7

Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 7 Next Regular Expression Mastery 8

Regex Program Example Regex Program Example
/ ab/ / ab/
start —- a b —- end start —- a b —- end
® How aboutsquab? ® \What aboutiog?
START |squahb START |d og
a |squahb Nope a |d og Nope
START slguahb START dlog
a slguahb Nope a dlog Nope
START s qgqluab START dolg
a s qluab Nope a dolg Nope
START s qulab START d o g|
a s qulab Yes! a d o g| Nope
b s q u<alb Yes!
END s g u<a b> Yes! ® The engine ran out of characters without reachiviy so the match fails.
® We reache®ND, so the match succeeds; it found dhepart ofsquab
Next T’;Q? Copyright © 2003 M. J. Domint

Next N4V Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 9

Next Regular Expression Mastery 10

Regex Program Example

/ ab/
EI start —- a b —- end .}
® \What aboutaha?
START la h a
a la h a Yes!
b <alh a Nope
START alh a
a alh a Nope
START a h|la
a a h|la Yes!
b a h<a| Nope
START a h a|
a a h a| Nope

® The engine ran out of characters without reachivy so the match fails.

Next (7 Copyright © 2003 M. J. Domint

Regex Program Example

/ ab/
EI start —- a b —- end .}
® What aboutihab?
START lahab
a lahab Yes!
b <alh a b Nope
START alh ab
a alh ab Nope
START a hlab
a a hlab Yes!
b a h<a|b Yes!
END a h<a b> Yes!

® We reached®ND, so the match succeeds; it found dbgart ofahab

Next T&Q A Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 11 Next Regular Expression Mastery 12

Regex Metacharacters Regex Metacharacters
® That was simple enough... ® The first metacharacter we'll seq|is
/ cat | dog/

® But the real power of regexes comes frostacharacters

® There are lots and lots of metacharacters:

[...] [~.0]

©osart -

® How does this matctat ?

A $ | START |lc at
| |c at
\d \w \s \D \W \S \b \B ; |<2|2% igz:
|
e We'll see all these at length later. END :g g| E . iﬁii

® \We reachedND, so the match succeeds

Next %7 Copyright © 2003 M. J. Domint

Next %7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery

13 Next Regular Expression Mastery 14

Regex Metacharacters

/ cat | dog/

L ostart -

® How does this matctiog?

START |d og

| |dog
c |d og Nope.
d |d og Yes!
o <d|o g Yes!
g <d o|g Yes!
END <d o g> Yes!

® ¢ didn’t work, so it went back to try

® Backtracking

Backtracking
® Backtracking is centrally important to the regex engine
® At a choice point, the regex engisaves its state
® |f the match fails, it returns to the last saved point

® Then it tries making the choice differently

Next T’LQ 7 Copyright © 2003 M. J. Domint

Next (7 Copyright © 2003 M. J. Domint

Next

Regular Expression Mastery

15 Next

Regular Expression Mastery

16

The Big Secr et

® That was it.

® You can go home now

® Or stay for some examples and details

Next

YSYA

Copyright © 2003 M. J. Domint

Backtracking

® How does this matchi sh?

L ostart -

START

/ cat | dog/

DO OLOLOLOOOOOOOOOOnnnnon

jo e ifen pifen piun e g g e gun g B e e g g g e ge g

—h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h —h

® That's all the alternatives, so the engine gives up.

® The match fails.

Nope.
Nope.

Nope.
Nope.

Nope.
Nope.

Nope.
Nope.

Nope.
Nope.

Next

BR7

Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 17 Next Regular Expression Mastery 18

Backtracking Backtracking

/ cat | dog/ / cat | dog/

L ostart - L ostart -
® What aboutcat ? ® caricature
START |scat START |lcaricature
| |[scat | |[caricature
c |[scat Nope. c [caricature Yes!
d [scat Nope. a <claricature Yes!
START s|c at t <calricature Nope.
| s|c at d [caricature Nope.
c s|c at Yes! START claricature
a s<c|a t Yes! | claricature
t s<c alt Yes! [clari cature Nope.
END s<c a t> Yes! d claricature Nope.
START calricature
L | calri cature
® \We reache®&ND, so the match succeeds; it found ¢he part ofscat c caricatur e Nope.
d calricatur e Nope.
START car|li catur e
| car|li catur e
< : : c car|li catur e Nope.
Next féQ? Copyright © 2003 M. J. Domint d ¢ a rIi catur e Noge.
START carilcatur e
| carilcatur e
c carijcatur e Yes!
a cari<clatur e Yes!
t cari<calture Yes!
END cari<cat>ur e Yes!

® \We reache®&ND, so the match succeeds; it found ¢he part ofcari cature

Next %Q 7 Copyright © 2003 M. J. Domint

Next

Regular Expression Mastery

19 Next

Regular Expression Mastery

20

Backtracking

L ostart -

® donesticate

START

START
I

c
a
t

El

/ cat | dog/

cocococoa
ocooooo
333333
©ODODDDD
nwnunnonon

33333333

ODODODDDD®D®DDDMDD D
VOO OLOLOLOOOOnnnon

® \We reachedND, so the match succeeds;

it found ¢he part ofdonesti cat e

.+ o+

— .

O0O00O0OO0O0O0O00O0O0O0OO0

Nope
Yes!
Yes!
Nope

Nope
Nope

Nope
Nope

DODLDDDLDLDLYYODDDD
e e e e e e e R T s
ODODODDDD®DDDDMDOD D

Yes!
Yes!
Yes!
Yes!

DO
-+ .-
®®D®®D®mD D

>

Next

$R7

Copyright © 2003 M. J. Domint

Quantifiers
| a+/
— —- a end
® The branch point:
O Go on to the next thing, or
O Go back and try another
® Tom
START |Tom
a |Tom Nope
START Tlo m
a Tlo m Nope
START T o|lm
a T olm Nope
START Ton
a Tomn Nope
® Out of alternatives---match fails.
Next (7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 21 Next Regular Expression Mastery 22

Quantifiers Greed

[a+/ [a+b/
— —- a end start —- a b —l- end
® Nat ® aaab
START INat START laaahb
a INat Nope a laaahb Yes!
START N at + <ala ab
a N at Yes! a <ala a b Yes!
+ N<a| t + <a ala b
a N<a| t Nope a <a ala b Yes!
END N<a>t Yes! + <a a a|b
a <a a a|b Nope.
® We reache®ND, so the match succeeds; it found dhgart ofNat b <a a alb Yes!
END <a a a b> Yes!

® Note! It tries to get anotherbefore it goes tcEND. .
9 9 ® \We reache®&ND, so the match succeeds; it found dheb part ofaaab

® Note! Thea+ part gobblesll thea's.

Next T’;Q? Copyright © 2003 M. J. Domint @ We say that is greedy.

Next DR Copyright © 2003 M. J. Domint

Next Regular Expression Mastery

23 Next Regular Expression Mastery 24

‘Greed’ is Often Misunder stood

[a+b/
Dosart ——m a b — end G
® aabaaaaaaaab
START laabaaaaaaaahb
a laabaaaaaaaahb Yes!
+ <alabaaaaaaaahb
a <alabaaaaaaaahb Yes!
+ <aalbaaaaaaaahb
a <aalbaaaaaaaahb Nope.
b <aalbaaaaaaaahb Yes!
END <aab>aaaaaaahb Yes!

® \We reache®ND, so the match succeeds; it found 4he part ofaabaaaaaaaab

® Note! It didn’t get themost

O It got theleftest

‘Greed’ is Often Misunder stood

/ dog| fish/

. ostart -

® With dogf i sh it matchesiog, notfi sh, even thoughi sh is longer
® Becauselog is further to the left

® Similarly:

/Larry| Larry Vall/

L ogrart

® Good Morning Larry Wall

Next f&@ VA Copyright © 2003 M. J. Domint

® [t getsLarry, notLarry Wal |

O Even thougharry vall islonger
O Because Perl tries the alternativesrder

® We'll see later that this is useful

Next K7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery

25 Next Regular Expression Mastery 26

Digression on *

[X*/

® Just like+ but with an option to skig entirely.

® Simpler diagram:

[X*]

Losart -

) Coend

‘Greed’ is Often Misunder stood

® Consider Hot XXX Action!" =~ s/ X*//

[X*/

C :)
D osam - Coend

® |t gets the empty string, NEKX

O Even thoughxX is longer

O Because Perl starts at the leftmost position first
O x* will matchzero Xes.

O At the leftmost position, therg@ e zeroxes.

@ Solution: Usex+ instead

Next <f{><° 7

Copyright © 2003 M. J. Domin. ® Maxim: “Say what you mean!”

® People over-use

® Many*’s should ber instead

Next <f{><° / Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 27 Next Regular Expression Mastery 28

Anti-Greed Why the Greedy Ones arethe Defaults

® \What's the opposite of ‘greedy’? (‘Monastic'?) ® Typical case:
® a+?b is just likea+b # $s contains a line of code:
$s = ' ($label =~ tr/.//) < 3; # do not attach these’;

® Except it tries the arrows ihe other order # Let's strip out comments

$s =~ s/#.*//;

| a+?b/
® $s iS now:
poman ——= @ b > end ' ($label =~ tr/./1) < 3;
® [f it weren't greedyss would be:
® aaab "($label =~ tr/.//) < 3; do not attach these’;
START laaab ® Suppose were nongreedy by default....
a laaahb Yes!
+? <ala a b oT he ex havior 'd hav
b laab Nope 0 get the expected behavior, you'd have to say
|
a9 <ala a g ves! # In the parallel universe where * is nongreedy
b <aala $s =~ s/ #. *$//;
b <a ala b Nope - : '
a <a ala b Yes! . - .
+2 <a a alb ® But that would bénefficient because it would backtrack on every character!
b <a a a|lb Yes!
END <a a a b> Yes!
® Noticemore backtrackin
g Next i’;@? Copyright © 2003 M. J. Domint

® Usuallyless efficient

® That's why the ‘normal’ one is greedy

Next T’;Q /. Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 29 Next Regular Expression Mastery 30

Anti-Greed Anti-Greed

® Here’s an example where the greedy one is less efficient. Ungreedy Version
Greedy Version /a+2(a| b)/
[a+(a| b)/
a
a s . . .
Lodtart ——ie a » end -
start —l- a end b
b
® aaab
START laaahb
® aaab a laaahb Yes!
START b * <ala ab
a I:ggb Yes! | <ala a b Nope
+ <ala ab a <ala ab Yes!
a <ala a b Yes! END <a a>a b Yes!
+ <a ala b .
a <a ala b Yes! ® \We reache®ND, so the match succeeds; it found dhepart ofaaab
+ <a a a|b
| <a a a|b ® This time the non-greedy match was more efficient
a <a a a|b Nope
b <a a a|b Yes!) - :)
END < 2 a b> Yoo ® But that's because it wascky -- it happened to find shorter match
® We reache@ND, so the match succeeds; it found 4hab part ofaaab ® When shorter matches exist, non-greedy may find them quickly
® But if not, they are slower than their greedy counterparts.
Next %7 Copyright © 2003 M. J. Domint

Next K7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 31 Next Regular Expression Mastery 32

Non-Greedy * Nested Operations

I X*21 ® Pretty much as you would expect.
: . ; 3 /(a] b) +
Losart - » end -
X
Next (7 Copyright © 2003 M. J. Domint

Next \'r\,”" / Copyright © 2003 M. J. Domint

Next Regular Expression Mastery

33 Next Regular Expression Mastery 34

Character Classes

Character Classes

® [ab] isnot the same as| b [ab] VSalb
/al b/ /[ab]/
. - a S -
Dogtart ——ie ford ——= end
_ . 3 : b . :
Losart -
’ ® No backtracking
® Much more efficient (5x or so)
ITab]/ ® Use when appropriate
. . a S ‘.
Dogtart ———ie ford —— end
3 : b . :
) . Next <f{>Q' / Copyright © 2003 M. J. Domint
® [ab] is asingle node
Next T’;Q /. Copyright © 2003 M. J. Domint

Next

Regular Expression Mastery

35

Next

Regular Expression Mastery 36

Greed is Good

® “How do | match a double-quoted string?”

Wrong

(any)

C

)

start —l- {guote)

® Why?

{guote) —- end

"Betty","Wite", 143. 12, "Hartford", "CT", 06117

open F, "< $file"

"If | were your husband," he replied,

® Probably what was wanted was

or die "CQuchie";

"l should drink it."

"Betty","Wite", 143.12, "Hartford","CT", 06117

open F, "< $file"

"If | were your husband," he replied,

or die "Quchie";

"l should drink it."

Next

&7

Copyright © 2003 M. J. Domint

Greed is Good

® “How do | match a double-quoted string?”

The'Little Knowledge' solution

DosrarT ———a

{quore)

[

{quote) —- end

C

{any))

® |t works, but in older versions of Perl it was slow

® Why?

® "|f | were your husband," he replied, "l should drink it."

Next

K7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 37 Next Regular Expression Mastery 38

Greed is Good Anchors

® “How do | match a double-quoted string?” ® Beginning anchot
. / Mab/
The Best Solution
e . {start N .
A R Dogtart ——a of a b —= end :
E B string) E '
{nota
C quete)) ® Attempt to match fails unless cursor is before the first character of the string
start —l- {quote) - {quote) —.- end ® absint he
. . . START labsinthe
. L " absinthe Yes!
® "If | were your husband," he replied, "l should drink it." a Ia bsinthe Yes!
b <albsi nt he Yes!
® Starting in 5.6.0,* and. *? got an optimization END <ab> i nthe Yes!
O As a result, there is no longer much difference between these examples ® By the way, I've been telling you a little fib up to now
O However, the difference still holds for more complicated cases ® Itreally looks like this:
- . (stair A .
Lostart ———a of ab —= end
E B swing) k -
Next <f{><°7 Copyright © 2003 M. J. Domint
START labsinthe
n labsinthe Yes!
ab labsinthe Yes!
END <ab>s i nt he Yes!

Next %Q 7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 39 Next Regular Expression Mastery 40
Anchors Anchors
/ ~abl ® Ending ancho$

: - (start : - / ab$/

Lostart ——a of ab |——= end

' ' swing) ' ' (end of

: srart ._—- ab tring) —-.. end :
® Attempt to match fails unless cursor is before the first character of the string '

® But also, the start node is altered so that the engine can only start at the begi
the string
® grab
START lgr ab
n lgr ab Yes!
ab lgr ab Nope
® Match fails.
® More about optimizations later
Next ?;Q A Copyright © 2003 M. J. Domint

® Attempt to matcts fails unless cursor is after the last character of the string

® absint he

® Match fails.

® This simple case is of course optimized

DYDY E

DO nunununnnon

T OOCUTOTOTOTOUTO

® In general, it really does do it this way

33333333535
P e T e
jm pien e pien s pen gien Hien M o
D®D®D®DD®D®DDD

Yes!
Nope

Nope
Nope
Nope

Next

<.

>

&7

Copyright © 2003 M. J. Domint

Next

Regular Expression Mastery

41 Next

Regular Expression Mastery 42

Anchors

Lostart ——a

/ ab$/

Common Anchor Error

ab

{end of
srring)

|——= end

® Attempt to matcts fails unless cursor is after the last character of the string

® grab
START lgr ab
ab lgr ab Nope
START glr ab
ab glr ab Nope
START grlab
ab grlab Yes!
$ g r<a bj Yes!
END g r<a b> Yes!
Next \I‘-{\,RPZ Copyright © 2003 M. J. Domint

Losart -

/~cat | dog| fish$/

(sta of
string)

Lo#tart - end

(end of
string)

/~(cat | dog| fish)$/

fend of
string)

{sran of
string)

end ;

Next

\'}{\,(i’f’ VA Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 43 Next Regular Expression Mastery

The Rest of the Metacharacters The Rest of the Metacharacters
dot

dot
® This brings up a subtlety:

® . matches any character....

® except newline! $time = <STDIN>; # "11:29\n"
($minutes) = ($time =~ /:(.*)$/);

® Why not? ® I|f . doesn't matchn, why does this pattern match succeed?
$time = <STDIN> # riL2o\n” ® The string ends withn, and. won'’t match n.

($minutes) = (S$time =~ /:(.*)%/);
® Answer:$ doesn’t have to be exactly at the end. It will match\ai that is at the

® So that$mi nut es gets' 29" and not' 29\ n"
end.
Next PR Copyright © 2003 M. J. Domint
Next K7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery

45 Next

Regular Expression Mastery 46

The Rest of the Metacharacters
dot

® To make match anything at all, evem, use the s modifier.

$tinme = <STDI N>; # "11:29\n"
($minutes) = ($time =~ /:(.*)$/s);

® $mi nut es iS NOW" 29\ n" rather thar 29"
® This might be useful in HTML matching, for example:

<p align=center><table align=center border=1>
<tr><td>\d</td><td>[0-9] </td></tr>

<tr><td>\D</td><td>["0-9] </td></tr>

<tr><td>\w</td><td>[A-Za-z0-9_] </ td></tr>

<t r><t d>\ W&/ t d><t d>["A-Za- z0-9_] </ td></tr>
<tr><td>\s</td><td>[&bsp;\t\n\f\r]</td></tr>

<tr><td>\ S</td><td>[" \t\n\f\r]</td></tr>

</ font></tabl e></ p>

® <tabl e[~>] *?>, *</t abl e> won't match this unless you use

Next %Q 7

Copyright © 2003 M. J. Domint

The Rest of the Metacharacters

® \d\D\w\W\s\S

O These are just character classes.

\ d|[0- 9]

\ D|[~0- 9]

\ W[A- Za- z0- 9_]
\ W["A- Za- z0- 9_]
\si[Vt\n\f\r]

\S|[A Vt\n\f\r]

® Actually they depend on the locale, so they’re not only shorter, they're also s
® Example: In Franca,w will match E and 1.

® But[A-Za-z0-9_] only includesE andi .

Next %Q 7

Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 47

Next Regular Expression Mastery

The Rest of the Metacharacters
[Doln|"|t]

® \ b: (‘word boundary’)

[tiolulclhl [tlhlalt]!]

O It succeeds when the previous characten is and the next is not (or vice
versa)

|[Don|’|t] [t ouchl [t hat|!

® \ B is the opposite:

O It succeeds when the previous and next characters arewathneither is w

Doln "’ t tlolulc|h tlhlalt !]

® Neither one will advance the cursor: They asgertions.

® Both pretend that string is bounded\twcharacters.

Next

BR7

Copyright © 2003 M. J. Domint

L ookahead Assertions

® (?=...) and(?!...) are similar ta b and\ B.

® They look ahead in the string to see if what follows matches

O If so, they succeed, but don’'t advance the cursor

® Example: Split an email header into fields:

Recei ved: fromni-s.u-net.com ([193.119. 182.90] hel o=bactri an. ni -s. u-net.com
by helOlwar. uk.vianw. net with esntp (Exim 3.22 #5)
i d 17H8J0- 0005p0- 00; Sun, 09 Jun 2002 20:24:51 +0100

Content-Di sposition: inline

Cont ent - Tr ansf er - Encodi ng: bi nary

M ME- Version: 1.0

X-Mailer: Id: //depot/mail/tkmail#119 /Perl5.008 Mail::Internet vl.46

Subj ect: Re: Standard |ayers, docunentation

I n- Repl y- To: <20020609191647. GE31617@ol - 18093024. dyn. opt onl i ne. net> from
M chael G Schwern on Sun, 09 Jun 2002 15:16: 47 -0400

Cont ent - Type: text/plain; charset="UTF-8"

To: schwer n@obox. com

® Wrong:split /\n/
O (Consider therecei ved line for example)

® Alsowrong:split /\nm\S/

Next <f{><° 7

Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 49 Next

Regular Expression Mastery 50

L ookahead Assertions

Recei ved: fromni-s.u-net.com ([193.119.182.90] hel o=bactri an. ni-s. u-net.com
by helOlwar. uk.vianw. net with esntp (Exi m 3.22 #5)
id 17H8J0- 0005po- 00; Sun, 09 Jun 2002 20:24:51 +0100

Cont ent - Di sposition: inline

@ Solution:

split /\n(?!\s)/

N . {not - .
¢ omart ———ae (newline) before |——m= end
" : space) - -

® Here's a trick: Make a pattern that never matches:

1(?1)1

Next ?;Q / Copyright © 2003 M. J. Domint

The Rest of the Metacharacters

{m n} is straightforward now
It's like * but keeps track of the number of matches
P{n} is the same a& n, n}

Because it keeps track of the number in a small integer, m and n are restricte
between 0 and 32767.

There’s a non-greedy versi¢m n} ? which is rarely used
Actually X* is implemented withm n} for nontrivialX.
This means that(f oo| bar) *$ wouldn’t match' f oo" x 35000.
O Actually the regex engine would run out of stack and dumps core before
Sometime after 5.004_04 and at or before 5.005_02, this was fixed
O n=32767 now has a special meaning; it is used internally to mean infinity

O You are no longer allowed to specify 32767 explicitly

Next PR Copyright © 2003 M. J. Domint

Next Regular Expression Mastery

51 Next Regular Expression Mastery 52

Regex Target Variables

o
O Characters skipped before matching begins
O (Always empty when is used)

® &
O Matched string

LIS
O Characters not used after end of match

O (Always empty whers is used)

Regex Target Variables

$ $&$

If your program never uses these, Perl doesn’t bother to maintain them at run
Result: All regexes get faster

If you use them anywhere, you lose this speed benefit

Avoid them

Never use them in a module

Don’tuse English

Next

Next %Q 7

Copyright © 2003 M. J. Domint

K7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 53 Next Regular Expression Mastery 54

Backreferences Backreferences
® (and) ® Occasionally you want the grouping effecf of .) without the capturing effect
® These also cause copying | ab+/

® They're slow for the same reasonsasetc.

® But they only slow the regexes that use them. start —- a » b end

® How do they work?

/ (ab) +/
1(.+)/
. . . . D osan — (mfn i ab - (ST?P end
: . (start {stop : \ . B copying) copying) 3
©oogtart ———je . - fany) - . — end -
" : copying) copying) " :
® Use(?:...) instead
[(?:ab)+/
Next \'H\,f::t‘f 7 Copyright © 2003 M. J. Domint
start —h- ab end

® In Perl 6, this skanky notation will be replaced with .]

Next \'r\,”" / Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 55 Next Regular Expression Mastery 56

Backr eferences Backreference Numberingis L exical
Likethis: ® Consider:
3 # $file is "report.pl" or "/usr/local/bin/report.pl"

($path, $name, $suff) = $file =~ m{(.*/)2(.*)\.(.*)}:
® Whensfileis/usr/local/bin/report.pl

2
1 /usr/local/bin/ report . pl
% % path - nanme- suf f

$1 $2 $3

But what about whesf i | e isreport. pl and has no path?

:

,_.
[}

Since the . */) 2 is 'skipped’, will (. *)\. (. *) be$1 and$2?
Not like this:

No. The parentheses are numberecbaiile time
1 4 O The value offi | e cannot affect that
. |
i : % 3 ¢ report . pl
.) pat h ey ot
L —_— $1 $2 $3

$pat h here is undefined

:

Similarly / (a+) | (b+)/

O If there are ang’s, they will be in$1

Next f‘;@? Copyright © 2003 M. J. Domint O If there arev’s but noa’s, theb's will be in$2, and$1 will be undefined

O $1 always contains the’s; $2 always contains the'’s

Next (7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery

57 Next Regular Expression Mastery 58

Backreferences
[(Vd{1,3}\.) {3} (\d{1,3})/
® People sometimes expect this to capturesnts2, $3, $4, but that's wrong
® |t has only two pairs of parentheses, so it capturesgangnds?2

® Why? Isn’t the[3} supposed to ‘repeat three times’?

, i3
I
A Y
DS U copying [l (digit) {det) copying
N Y
I
Lo meme— o oo
{13}
(star (stop
copying [l (digit) copying e end
2) 2)

® What does it do with30. 91. 6. 1?
Start copying, copy th&30 into $1, stop copying, repeat
Start copying, copy thel into $1, stop copying, repeat
Start copying, copy the into $1, stop copying, go on
Start copying, copy theinto $2, stop copying, end of string
® End result: Only6 is in$1.

® Solution: Usen / g (coming up) okpl it

Backreferences
® Instead of& etc., use A (. *?) (PATTERN) (. *) $/
O Thensi, $2, $3 instead o' , $&, $’
O Just as slow a&& etc., but doesn'’t affecther regexes

O Why (.*?) here?

Next <f{>Q' /. Copyright © 2003 M. J. Domint

Next N4 YA Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 59 Next Regular Expression Mastery 60

Where Do Machines Come From? Run-Time Construction Disaster
® Usually constructed at compile time ® Beginners like to do this:
® Same machine used repeatedly to match any string ny @ats = ('fo*’, 'ba.’, 'w3');
® When regex varies at run time, construction deferred Wnic '(,,eeg§ﬁ) $E)at (@ats) {

print if /$pat/;

® / $PAT/ isvery slow)

® Regex machine is constructeath time through the loop, then discarded

Next J“LQZ Copyright © 2003 M. J. Domint @ 1 million lines of input---3 million constructions

Next K7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 61 Next Regular Expression Mastery 62
Avoiding ThisDisaster Minor Disaster

push @ats, qr/$_/ for 'fo*’, "ba.’, "w3; grep

while (<>) { ny $pat = shift;

foreach $pat (@ats) {
print if /$pat/;

}

Since 5.005, regexes are first-class objects

® 3$regex = qr/ REGEX/ yields a regex object

® $string =~ /$regex/ doesot perform another compilation

® $string =~ $regex works also

This is about 80% faster

while (<) {
print if /$pat/;

® Here the patterdoes not vary at runtime

® Perl still checks each time to see if it has changed

ny $pat = shift;

while (<>) {
print if /$pat/o;

® / o modifier promises that the pattern wilver change

Next %Q 7

® Perl no longer needs to check

Copyright © 2003 M. J. Domint

Next %Q 7

Copyright © 2003 M. J. Domint

Next Regular Expression Mastery

63 Next Regular Expression Mastery 64

Another Disaster

IA(\VwH 1) < S

® Matches Perl identifiers likoo andGet opt : : St d.

® \What does it do witlhbcd! ?

\ w <a b ¢ d>
\wt \wt <a b c><d>
\wa v <a b><c d>
\w Vv \ v <a b><c><d>
\w \ w <a><b ¢ d>
Vvt \wk v <a><b c><d>
\w+ vt \ wa <a><c d>
\w \wt Vvt \w <a><c><d>
G ves up.

® This doesn't include all the times it tried to matchagainst one of the letters, or
the times it tried making match no times, or...

No good
Al so no good
Al so no good

Still no good
Al so no good
Still no good
Still no good
Guess what ?

Disaster Continues

IV 22) * 8/
® Try
perl -Me=debug -e ’"abcd!" =~ /A(?2:\wH| 1) *$/”
® It generates 279 lines of diagnostic output about the backtracking that it tried
it gave up.
perl -Me=debug -e ’"abcde!" =~ [A(2:\wH|::)*$/’

takes twice as long and generates twice as much: 535 lines. We would expect
perl -Me=debug -e '"what_an_incredibl e_disaster!" =~ /A(2:\w+|::)*$/’

to take about 8,388,608 times as long and to generate 2,147,483,671 lines of outy

® |t doesn't take forever, but it's hard to tell the difference.

Next <f{>Q 7

Copyright © 2003 M. J. Domint

Next NRAYA Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 65

Next

Regular Expression Mastery

66

Avoiding ThisDisaster
F(\w| 22) %)
® Nested quantifiers are always risky
® \Whenever you write one, make sure you really need it
® To fix this one is easy:
(VW co)*/

® This is much more efficient --- there aren’t so many things to try.

Next T&Q 7

Copyright © 2003 M. J. Domint

Avoiding ThisDisaster

F(\w ::)*/

® Perhaps a more general solution involves the (few. .) operator:

@ State is saved as usual inside the fence

F((?25\wH) | - :

(der)

» end :

Posart - -

O But this state is discarded when the node pointer exits the fence

O State can backtragbast the fenced area

O But notinto the fenced area

® \ w+ might match many different strings

O (?>\w+) says that only thérst choice can be correct

O If the first choice doesn’t work, don'’t try any other choice

Next

<

>

&7

Copyright © 2003 M. J. Domint

Next Regular Expression Mastery

67 Next Regular Expression Mastery 68

Perl 6

® Perl has a (deserved) reputation for having too much punctuation

O A lot of that reputation is based on Perl’s regex syntax

O But a lot of the regex syntax was inherited from Ken Thompson'’s original

design
O He used up all the brackets for things like quantification

O All that was left were things like?: . . .)

® Perl 6 will completely overhaul its regex syntax

O Patterns will become much more like BNF grammars

O They will efficiently incorporate other patterns as sub-parts:

rule octet { \d <1,3>}
rule ip_address { <octet> [\. <octet>]<3>}

® Traditional-style constructions will continue to be supported:
$i p_address = /\d<1, 3>[\.\d<1, 3>] <3>/;
® As will the old notation:

$ip_address = mp5/\d{1,3}(?:\.\d{1,3}){3}/;

® Seehttp://ww. perl.con | pt/al/ 2002/ 06/ 04/ apo5. htni for the fascinating

details

Stringsthat contain newlines. /s and / m

/'s: Make. match newline (normally it doesn't)

/ m Make~ match at beginning of line (after a newline) rather than beginning ¢
string, and similarlys

O Example: Supposgressage contains an entire mail message.
($subj ect) = ($nessage =~ /"(Subject:\s+(.[\n\s)*)$/m;
ExtractsSubj ect field.

If you use/ m use\ A and\ Z to get the old meanings ofands: Match at beginning
or end of string only

Recall thats normally matches before a newline at the end of the strindoes the
too.

If you really want to matclonly at the end of the string, use

Perl 6 will fix this mess, s and/ mare going away:
n begi nni ng of string
$ end of string
AN begi nning of line
$3 end of line

mat ch any single character
n match a new i ne
N mat ch any single character except a new ine

Next N4V Copyright © 2003 M. J. Domint

Next

(7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 69 Next Regular Expression Mastery 70

Repeated Matching: / g

® /g means to do the match repeatedly

Randal’s Rule

® Randal Schwartz (author b&arning
O with s/ // g, replace all occurrences (non-overlapping) Perl) says:

O with mi / g, find all matches, starting each where the previous one finishec Jse capturing ol / g when you
know what you want t&eep.

m / g in list context returns a list of all matching strings:

"Madagascar" =~ ma./g; # returns ("ad’, 'ag', 'as’, 'ar’) USESpI it when you know what yQ
® Extract all the numerals from a string: want tothrow away.

"12-345:6 78" =~ mi\d+/g; # returns ('12', '345', '6', '78")
® Note that this doesot return2 or 34 or 45

O Eachm / g picks up where the previous matided

® Split a string into fixed-length substrings:

@ubstrings = "abcdef ghij kl mopqgr stuvwxyz" =~ /.{1,5}/g;

Yields (' abcde’, "fghij, "klmo', 'pqgrst’, "uvwy', 'z')
® Notice importance of greed here - what if we had ugeds} ? ? Next K7 Copyright © 2003 M. J. Domint

® To omitz, use. {5} instead of {1, 5}

Next %7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery

71 Next Regular Expression Mastery 72

Repeated Matching: / g
® |n scalar context,g turns the matcher into an iterator

while ("I like pie" =~ /\w/g) {
print "<$&\n";

<| >
<like>
<pi e>
® Each scalar hasarrrent position

® / g starts from the current position and sets it afterwards

® You can get and set the current position withpitee function:

ny $s = "I like pie";

for ($i =0; $i < length($s); $i += 2) {
pos($s) = $i;
$s =~ /\w/g;

print "<$&\n";

<| >
<like>
<ke>
<>

<i e>

® A failed match on a string resets piss

Extended Format: / x
® / x lets you write regexes more readably.
O White space is ignored. (Use)
O #-style comments are allowed
® Extended and very practical example coming up later...

® Caution: Unescaped will still terminate the regex, even if it's ir

a comment!
$x =~ /\d+ # nuner at or
$FRAC # FRAC natches either a / or a : synbol
\d+ # denoni nat or
1 x;

® Perl sees the in the 'comment’ before it sees the

O It thinks that theé ends the regex
O Confusion ensues

O Perl 6 will fix this: modifiers precede the pattern instead of following it

Next <f{><° 7

Copyright © 2003 M. J. Domint

Next <f{><° 7

Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 73 Next Regular Expression Mastery 74
Tokenizing Tokenizing
® Tokens are the basic syntactically meaningful portions of an input. ® In C, you use programs likeex to convert a description of tl §
legal tokens into a tokenizer program.
® For example, in
® Or you write a program to read the input
H . har r-by-char r and run machin
prlnt 12+3, character-by-character and run a state machine
® That is not very Perl-like.
° i ; . -
The tokens arerint, 12, +, 3, and; ® |tis also not very efficient.
® Individual characters are not generally meaningful.
® Tokenizing is the act of converting a character stream into a token stream.
Next </>Q 7 Copyright © 2003 M. J. Domint
® Also calledlexing

Next </>Q 7

Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 75 Next Regular Expression Mastery 76

Tokenizing Tokenizing

® Aregex isalready a program for reading data character-by-character and runn @ Our trick:
state machine
split /(a+)/, $string
® Let's write a lexer for a calculator. It has the following tokens: e This breakssst ri ng into pieces which alternate between
O+, -, 1, **,(h), O Strings ofa’s
O :=
O The other stuff that was between tte

O Variable namesval ue2, for example

® Note speciaépl i t meaning of capturing parentheses
O Numbers with optional decimal points and scientific notation

O Whitespace will be ignored except where it separates tokens
Next T’;Q 7 Copyright © 2003 M. J. Domint

Next PR Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 77 Next Regular Expression Mastery 78

Tokenizing Tokenizing
® The tokenizer: A different version of the same thing:
sub tokens { ny $s;
my @okens = sub set_string {
split n{($s = shift;
\¥** | 1= # ** or := operator }
[-+*/~()=] # some other operator sub next_t oken {
return PONER if $s =~ /\G **/gc;
[A-Za-z]\w* # ldentifier return ASSIGNMENT if $s =~ /\G =/gc;
| return "OP $1" if $s =~ /I\NQ[-+*/"()=])/gc;
\d*\.\d+(?:[Ee]\d+)? # Decimal nunber return | DENT if $s =~ /I\J A-Za-z]\w*/ gc;
| return FLOAT if $s =~ /\Qd*\.\d+(?:[Ee]\d+)?/gc;
\d+ # | nteger return I NT if $s =~ /\ G d+/ gc;
)X, shift(); return next_token() if $s =~ /\G s+/gc;
grep /\S/, @ okens; return BAD_CHAR if $s =~ /\G /gc;
}
® Easy to understand and to change, efficient, predictable. ® This uses thegc modifier with\ G
® Behaves very much like similaex-generated parsers ® \ Ganchors the match to ocaatrthe currenpos()

e This is why we neetlx: O Rather than somewhere to the right of it as usual

split ® Normally, thepos() is discarded if the match fails
(A o= [-+/2() =] | [A-Za-z]\w [\ d*\ .V d+(?: [Ee] \d+) ?| \d+) },
shift(); O /¢ disables this misfeature

® Note that the order of thealternatives is important

O Is** one token or two? What abaigt. 237? q . .
Next ReYA Copyright © 2003 M. J. Domint

Next T’;Q 7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 79 Next Regular Expression Mastery 80

Optimizations Optimizations
® Common cases are heavily optimized ® Since 5.6, Perl has had a very clefleating-anchored search
® /literal/ doesn't use the regex engine ® |t tries to locate two long strings whidhust be in the target
O Instead, it does a Boyer-Moore search ® |t searches for these first, then works inward
® /~PAT/ never advances the cursor ® For example, in
® / PAT$/ starts at the correct place if the length of the result is known "e---B---A--" =~ [AKB
® If the target string is too short, the regex engine is never invoked ® Perl looks first fom, then fors

. ® |t figur hat there’s onl
O /(fish|dog){7, 12}\s+/ cannot match any string shorter than 22 charac tfigures out that there's only ore

® There’s no consistent choice Wyrso it fails immediately

When in doubt, benchmark!

) ® No backtracking search
® - M e=debug is helpful here also

Meee-A---B---" =~ [A-*B
® The/i modifier makes the match case-insensitive .) .)
® Here Perl locates theimmediately, and skips the preceding characters
O It tends tadisable optimizations)
® For fullest details, seger | debgut s andper| - M e=debug output
O Use it sparingly) . .
® /i disables this --- avoid it
Next PRAYA Copyright © 2003 M. J. Domint

Next %Q 7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 81 Next Regular Expression Mastery 82

Optimizations More New M etachar acters
® Since 5.6, Perl has treated, . +, . *?, and. +? specially ® These all appeared in 5.005
O When they are followed by some literal string... ® (?{CODE}) embeds arbitrary code into a regex

O ...the engine is smarter about how many repetitions might work The code is executed when the node pointer passes through it

O As a result, this example is no longer slow: It matches the empty string and always succeeds

[mox2n ® (?(CONDI TI ON) YES| NO) evaluates the condition

O Iftrue, try to matchvEes, elseNo

o osmarr ——ae (guote) {quote) fp——=me end

C) O omit N, it defaults to nothing
{any)

O CONDI TI ON can be g ?{ CODE}) expression

Example: Match strings whete. .) are balanced

O (The holy grail of regular expressions.
Next (7 Copyright © 2003 M. J. Domint (v 9 P)

Next ?;Q / Copyright © 2003 M. J. Domint

Next Regular Expression Mastery

83 Next Regular Expression Mastery 84

Matching Strings with Balanced Parentheses

® How does a human decide that) (1i ke(pie))!) is balanced?

(1) (like(pie)))
12 12 3 21 0
® That's what we’ll do:

N

(?{ local $d=0 }) # Set depth to O
(?:

\ (# When you see an open parenthesis...
(?{$d++}) # ...increment the depth
|
\) # or you could see a close parenthesis...
(?{%d--1}) # ...in which case decrenment the depth...
? # ...and check...
(?{$d<0}) # ...if there was no natching open paren..
2" # ...then fail.
| .
(?> [~()]*) # or you could see some non-parenthesis text
(but don't bother backtracking into it)
)*
After you match as much as possible...
(? # ...check to see if...
(?{$d! =0}) # ...there were unmatched open parent heses. ..
(?") # ...if so then fail.
)
$

® /x was essential here:

A(?{1ocal $d=0}) (?:\ ((2{$d++}) [\) (2{$d--}) (?2(2{$d<0}) (?!)) | (?>[~()]*))*(2(?{$d! =0})(?!))$
® Similarly: Recognize palindromes:

INC*) 2(2>(. %)) (?2(?{$1 ne reverse $2})(?!))/

Thanks!

® More information:
O Mastering Regular Expressions (Jeffrey E. F. Friedl; O'Reilly & Associates)
® A new and wonderful second edition was released in July 2002
O perlre manual page (reference and definitions)

B http://ww. perl doc. coni perl5.8.0/pod/perlre. htm

O perl op manual page (examples; detailsof/ andnt / and their modifiers)

B http://ww. perl doc. conf perl| 5. 8.0/ pod/ perlop. htm

O perlretut andperl requi ck tutorials (new in 5.6.1)

B http://ww. perldoc. confperl5.8.0/pod/perlretut. htm
B http://ww. perldoc. conl perl 5. 8.0/ pod/ perlrequick. htm

O perl fag6 - frequently asked questions

B http://ww. perldoc. conl perl5.8.0/pod/perlfag6. ht m

O Perl Cookbook (Christiansen and Torkington; O'Reilly & Associates)
m Chapter 6 especially
O Apocalypse 5: Regexes in Perl 6

B http://ww. perl.conl pub/a/ 2002/ 06/ 04/ apo5. ht m

Next <f{><° /. Copyright © 2003 M. J. Domint

Next %Q 7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 85 Next Regular Expression Mastery 86

Residue of the Regexes Word Boundary Assertion
® These talks evolve over time I.*\b. +
® Old slides move out, new ones come in (ans)
® You might as well see the slides that were dropped C) 3 k
start {boundary) fany) s end -
Next %7 Copyrigh in_ ® Mhat ho?
Is | opyright © 2003 M. J. Domint !
START |Wh at ho?
. |Wh at ho? Yes!
* <Wh at ho?
<Wh at ho? Yes!
* <Wh|a t ho?
<Wh at hjo ? Yes!
* <Wh a t h o] ?
<Wh at h o] ? Yes!
* <Wh at h o ?
. <Wh at h o ? Nope
\b <Wh at h o ? Nope
\b <Wh at h o] ? Yes!
. <Wh at h o] ? Yes!
+ <Wh at h o ?|
. <Wh at h o ? Nope
END <Wh at h o ?> Yes!

® Maybe it's a little surprising that the word boundary it found was the one apth:

Next <f{><° 7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 87 Next Regular Expression Mastery 88

New Features. POSI X and Unicode Character Upcoming Enhancements?

Classes ® ‘Onion rings’
® [:space:] matches a whitespace character ® Match occurrences GATTERN2 but only when it occurs inside something that a
. .) matchesPATTERNL
® Anything that would test true with theiGspace function
® For example:
® \ P{| sSpace} matches any Unicode character that possesses$hece property
(?2<> <[7r>]*> # Inside an HTM. tag expression...
i i ; \w+ = \w+ # Match an attribute=val ue pair
® This is new in 5.6.0.) x # But otherwi se attribute=value is not allowed.
® This might change before it actually puts in an appearance.
Next <f{>@7 Copyright © 2003 M. J. Domin. ~ ® Didn’t get into 5.8; maybe 5.10?

Next K7 Copyright © 2003 M. J. Domint

Next Regular Expression Mastery

89 Next Regular Expression Mastery

90

Tokenizing
® We can get rid of thafr ep:

sub tokens {

split nm{(

\¥** | 1= # ** or := operator

L ookahead Assertions

® (?=...) and(?!...) are similar ta b and\ B.

® They look ahead in the string to see if what follows matches

[-+*/~()=] # some other operator

[A-Za-z]\w* # ldentifier

Vd*\ .\ d+(?: [Ee] \ d+) ?

® |f so, they succeed, but don’t advance the cursor

® Example: Match everything fror up to next>

O Wrong:<=. *=>

Deci mal nunber
O (Considex=f oo bar => baz =>)

[<=((?1=>).)*)=>/

(not
before
=)

)

\d+ # | nteger
% ® Solution:
\'s+
Ix, shift();
}
® (Thanks to Andy Wardley.) {any)
E. start .: <= C—

Next %Q 7

Copyright © 2003 M. J. Domint A

® Here's a trick: Make a pattern that never matches:

—= end

Next

Copyright © 2003 M. J. Domint

Next Regular Expression Mastery

91 Next Regular Expression Mastery 92

Backreferences
1 (2 (\d*)\s*)+
® Here's a FAQ:
® |f you try to matchL2 34 56, only the56 goes intas1.

® Why? Isn’t the+ supposed to ‘repeat’?

(digit) {zpace)
{srair C > {=op

copying) copying)

Dostart ——fe

® \What does it do?

O Start copying, copy the2 into $1, stop copying, repeat

O Start copying, copy th&4 into $1, stop copying, repeat

O Start copying, copy th&s into $1, stop copying, end of string
® End result: Onlys6 is in$1.
® Solutions:

O Usesplit

O Useni / g (coming up)

Randal’s Rule

For example:

Newsgroups: conp. | ang. perl . noder at ed
Subj ect: perl question
Date: Tue, 04 Feb 2003 21:52: 02 GVl

I have a perl question, | have this as
$string = ((!TM*A)| (TM(((! TASEL) *TAA) | ((TASEL) *TAB))) ;

I want this to be seperated as TM A, TM TASEL, TAA, TASEL,
TAB. How do i do it ?

Thanks i n advance ?
) perl user 99
end
® Once | figured out what the question was, the answer was just

@arts = $string =~ m[A-Z]+ g;

Next NRAYA Copyright © 2003 M. J. Domint

Next T’;Q /. Copyright © 2003 M. J. Domint

Next Regular Expression Mastery 93 Next Regular Expression Mastery 94

Digression for a Practical Application Option

® |et's apply what we know 1 X?/

® Someone showed up on IRC asking this today:

| san X |—= ond
® “How do | remove the characters from the lago the end?” Q_/

six.*11; # VIRONG ® Also there’s a non-greedy versizn?

LF)YX.*$1 # Ri ght t sl
sICm)x. 281 ght. but sl ow ® | used to pay US$60 for a live sightingzin the wild
sIX[*x]*/1; # WRONG

® But one day | thought of
s/ x[Ax]*$//; # Ahhhh. (1/3 faster)

if ($option =~ /A-f(i(e(ld??)2?)2?)228/) {
.

® End of digression

Next bz Copyright © 2003 M. J. Domint Next K7 Copyright © 2003 M. J. Domint
> - -

