
Next Regular Expression Mastery 1

Regular Expression Mastery

M. J. Dominus

Plover Systems Co.

 mjd-tpc-regex-@plover.com

v1.09 (September, 2003)

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 2

Regular Expressions
Regexes (not Regexps)

Also called patterns

Very useful in Perl

 m/REGEX/
 s/REGEX/STRING/ (left part only!)
 split /REGEX/, STRING
 grep /REGEX/, LIST

Powerful, dangerous, risky

Almost everyone has been unpleasantly surprised at one time or another

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 3

What We’ll Do
How regexes work on the inside

Typical pitfalls

How to avoid pitfalls and make regexes faster

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 4

Big Secret
Regex matching is like a machine
running a program

The machine is very simple, and always
does the same thing

The regex is the program, and varies the
machine’s behavior a little

To understand regexes, you need to
understand the machine

The machine is called the Regex Engine

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 5

Regex Programs
Made of nodes

Each has a pointer to the next node

Node says what to match

For example:

/ab/

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 6

Regex Program Example
/ab/

What does this mean?

How is the target string ab matched by this regex?

 START |a b
 a |a b Yes!
 b <a|b Yes!
 END <a b> Yes!

We reached END, so the match succeeds; it found the ab

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 7

Regex Program Example
/ab/

How about squab?

 START |s q u a b
 a |s q u a b Nope
 START s|q u a b
 a s|q u a b Nope
 START s q|u a b
 a s q|u a b Nope
 START s q u|a b
 a s q u|a b Yes!
 b s q u<a|b Yes!
 END s q u<a b> Yes!

We reached END, so the match succeeds; it found the ab part of squab

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 8

Regex Program Example
/ab/

What about dog?

 START |d o g
 a |d o g Nope
 START d|o g
 a d|o g Nope
 START d o|g
 a d o|g Nope
 START d o g|
 a d o g| Nope

The engine ran out of characters without reaching END, so the match fails.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 9

Regex Program Example
/ab/

What about aha?

 START |a h a
 a |a h a Yes!
 b <a|h a Nope
 START a|h a
 a a|h a Nope
 START a h|a
 a a h|a Yes!
 b a h<a| Nope
 START a h a|
 a a h a| Nope

The engine ran out of characters without reaching END, so the match fails.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 10

Regex Program Example
/ab/

What about ahab?

 START |a h a b
 a |a h a b Yes!
 b <a|h a b Nope
 START a|h a b
 a a|h a b Nope
 START a h|a b
 a a h|a b Yes!
 b a h<a|b Yes!
 END a h<a b> Yes!

We reached END, so the match succeeds; it found the ab part of ahab

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 11

Regex Metacharacters
That was simple enough...

But the real power of regexes comes from metacharacters

There are lots and lots of metacharacters:

 . [...] [^...]

 + * ? {...}

 +? *? ?? {...}?

 ^ $ |

 \d \w \s \D \W \S \b \B

We’ll see all these at length later.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 12

Regex Metacharacters
The first metacharacter we’ll see is |

/cat|dog/

How does this match cat?

 START |c a t
 | |c a t
 c |c a t Yes!
 a <c|a t Yes!
 t <c a|t Yes!
 END <c a t> Yes!

We reached END, so the match succeeds

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 13

Regex Metacharacters
/cat|dog/

How does this match dog?

 START |d o g
 | |d o g
 c |d o g Nope.
 d |d o g Yes!
 o <d|o g Yes!
 g <d o|g Yes!
 END <d o g> Yes!

c didn’t work, so it went back to try d

Backtracking

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 14

Backtracking
Backtracking is centrally important to the regex engine

At a choice point, the regex engine saves its state

If the match fails, it returns to the last saved point

Then it tries making the choice differently

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 15

The Big Secret
That was it.

You can go home now

Or stay for some examples and details

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 16

Backtracking
/cat|dog/

How does this match fish?

 START |f i s h
 | |f i s h
 c |f i s h Nope.
 d |f i s h Nope.
 START f|i s h
 | f|i s h
 c f|i s h Nope.
 d f|i s h Nope.
 START f i|s h
 | f i|s h
 c f i|s h Nope.
 d f i|s h Nope.
 START f i s|h
 | f i s|h
 c f i s|h Nope.
 d f i s|h Nope.
 START f i s h|
 | f i s h|
 c f i s h| Nope.
 d f i s h| Nope.

That’s all the alternatives, so the engine gives up.

The match fails.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 17

Backtracking
/cat|dog/

What about scat?

 START |s c a t
 | |s c a t
 c |s c a t Nope.
 d |s c a t Nope.
 START s|c a t
 | s|c a t
 c s|c a t Yes!
 a s<c|a t Yes!
 t s<c a|t Yes!
 END s<c a t> Yes!

We reached END, so the match succeeds; it found the cat part of scat

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 18

Backtracking
/cat|dog/

caricature

 START |c a r i c a t u r e
 | |c a r i c a t u r e
 c |c a r i c a t u r e Yes!
 a <c|a r i c a t u r e Yes!
 t <c a|r i c a t u r e Nope.
 d |c a r i c a t u r e Nope.
 START c|a r i c a t u r e
 | c|a r i c a t u r e
 c c|a r i c a t u r e Nope.
 d c|a r i c a t u r e Nope.
 START c a|r i c a t u r e
 | c a|r i c a t u r e
 c c a|r i c a t u r e Nope.
 d c a|r i c a t u r e Nope.
 START c a r|i c a t u r e
 | c a r|i c a t u r e
 c c a r|i c a t u r e Nope.
 d c a r|i c a t u r e Nope.
 START c a r i|c a t u r e
 | c a r i|c a t u r e
 c c a r i|c a t u r e Yes!
 a c a r i<c|a t u r e Yes!
 t c a r i<c a|t u r e Yes!
 END c a r i<c a t>u r e Yes!

We reached END, so the match succeeds; it found the cat part of caricature

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 19

Backtracking
/cat|dog/

domesticate

 START |d o m e s t i c a t e
 | |d o m e s t i c a t e
 c |d o m e s t i c a t e Nope
 d |d o m e s t i c a t e Yes!
 o <d|o m e s t i c a t e Yes!
 g <d o|m e s t i c a t e Nope
 START d|o m e s t i c a t e
 | d|o m e s t i c a t e
 c d|o m e s t i c a t e Nope
 d d|o m e s t i c a t e Nope
 START d o|m e s t i c a t e
 | d o|m e s t i c a t e
 c d o|m e s t i c a t e Nope
 d d o|m e s t i c a t e Nope

 ...

 START d o m e s t i|c a t e
 | d o m e s t i|c a t e
 c d o m e s t i|c a t e Yes!
 a d o m e s t i<c|a t e Yes!
 t d o m e s t i<c a|t e Yes!
 END d o m e s t i<c a t>e Yes!

We reached END, so the match succeeds; it found the cat part of domesticate

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 20

Quantifiers
/a+/

The branch point:

Go on to the next thing, or

Go back and try another a

Tom

 START |T o m
 a |T o m Nope
 START T|o m
 a T|o m Nope
 START T o|m
 a T o|m Nope
 START T o m|
 a T o m| Nope

Out of alternatives---match fails.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 21

Quantifiers
/a+/

Nat

 START |N a t
 a |N a t Nope
 START N|a t
 a N|a t Yes!
 + N<a|t
 a N<a|t Nope
 END N<a>t Yes!

We reached END, so the match succeeds; it found the a part of Nat

Note! It tries to get another a before it goes to END.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 22

Greed
/a+b/

aaab

 START |a a a b
 a |a a a b Yes!
 + <a|a a b
 a <a|a a b Yes!
 + <a a|a b
 a <a a|a b Yes!
 + <a a a|b
 a <a a a|b Nope.
 b <a a a|b Yes!
 END <a a a b> Yes!

We reached END, so the match succeeds; it found the aaab part of aaab

Note! The a+ part gobbles all the a’s.

We say that + is greedy.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 23

‘Greed’ is Often Misunderstood
/a+b/

aabaaaaaaaab

 START |a a b a a a a a a a a b
 a |a a b a a a a a a a a b Yes!
 + <a|a b a a a a a a a a b
 a <a|a b a a a a a a a a b Yes!
 + <a a|b a a a a a a a a b
 a <a a|b a a a a a a a a b Nope.
 b <a a|b a a a a a a a a b Yes!
 END <a a b>a a a a a a a a b Yes!

We reached END, so the match succeeds; it found the aab part of aabaaaaaaaab

Note! It didn’t get the most

It got the leftest

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 24

‘Greed’ is Often Misunderstood
/dog|fish/

With dogfish it matches dog, not fish, even though fish is longer

Because dog is further to the left

Similarly:

/Larry|Larry Wall/

Good Morning Larry Wall

It gets Larry, not Larry Wall

Even though Larry Wall is longer

Because Perl tries the alternatives in order

We’ll see later that this is useful

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 25

Digression on *
/X*/

Just like + but with an option to skip X entirely.

Simpler diagram:

/X*/

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 26

‘Greed’ is Often Misunderstood
Consider "Hot XXX Action!" =~ s/X*//

/X*/

It gets the empty string, not XXX

Even though XXX is longer

Because Perl starts at the leftmost position first

X* will match zero Xes.

At the leftmost position, there are zero Xes.

Solution: Use X+ instead

Maxim: ‘‘Say what you mean!’’

People over-use *

Many *’s should be + instead

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 27

Anti-Greed
What’s the opposite of ‘greedy’? (‘Monastic’?)

a+?b is just like a+b

Except it tries the arrows in the other order

/a+?b/

aaab

 START |a a a b
 a |a a a b Yes!
 +? <a|a a b
 b <a|a a b Nope
 a <a|a a b Yes!
 +? <a a|a b
 b <a a|a b Nope
 a <a a|a b Yes!
 +? <a a a|b
 b <a a a|b Yes!
 END <a a a b> Yes!

Notice more backtracking

Usually less efficient

That’s why the ‘normal’ one is greedy

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 28

Why the Greedy Ones are the Defaults
Typical case:

 # $s contains a line of code:
 $s = ’($label =~ tr/.//) < 3; # do not attach these’;

 # Let’s strip out comments
 $s =~ s/#.*//;

$s is now:

 ’($label =~ tr/.//) < 3; ’

If it weren’t greedy, $s would be:

 ’($label =~ tr/.//) < 3; do not attach these’;

Suppose * were nongreedy by default....

To get the expected behavior, you’d have to say

 # In the parallel universe where * is nongreedy
 $s =~ s/#.*$//;

But that would be inefficient because it would backtrack on every character!

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 29

Anti-Greed
Here’s an example where the greedy one is less efficient.

Greedy Version

/a+(a|b)/

aaab

 START |a a a b
 a |a a a b Yes!
 + <a|a a b
 a <a|a a b Yes!
 + <a a|a b
 a <a a|a b Yes!
 + <a a a|b
 | <a a a|b
 a <a a a|b Nope
 b <a a a|b Yes!
 END <a a a b> Yes!

We reached END, so the match succeeds; it found the aaab part of aaab

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 30

Anti-Greed

Ungreedy Version

/a+?(a|b)/

aaab

 START |a a a b
 a |a a a b Yes!
 + <a|a a b
 | <a|a a b Nope
 a <a|a a b Yes!
 END <a a>a b Yes!

We reached END, so the match succeeds; it found the aa part of aaab

This time the non-greedy match was more efficient

But that’s because it was lucky -- it happened to find a shorter match

When shorter matches exist, non-greedy may find them quickly

But if not, they are slower than their greedy counterparts.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 31

Non-Greedy *
/X*?/

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 32

Nested Operations
Pretty much as you would expect.

/(a|b)+/

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 33

Character Classes
[ab] is not the same as a|b

/a|b/

/[ab]/

[ab] is a single node

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 34

Character Classes

[ab] vs a|b

/[ab]/

No backtracking

Much more efficient (5x or so)

Use when appropriate

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 35

Greed is Good
‘‘How do I match a double-quoted string?’’

Wrong

/".*"/

Why?

 "Betty","White",143.12,"Hartford","CT",06117

 open F, "< $file" or die "Ouchie";

 "If I were your husband," he replied, "I should drink it."

Probably what was wanted was

 "Betty","White",143.12,"Hartford","CT",06117

 open F, "< $file" or die "Ouchie";

 "If I were your husband," he replied, "I should drink it."

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 36

Greed is Good
‘‘How do I match a double-quoted string?’’

The ‘Little Knowledge’ solution

/".*?"/

It works, but in older versions of Perl it was slow

Why?

"If I were your husband," he replied, "I should drink it."

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 37

Greed is Good
‘‘How do I match a double-quoted string?’’

The Best Solution

/"[^"]*"/

"If I were your husband," he replied, "I should drink it."

Starting in 5.6.0, .* and .*? got an optimization

As a result, there is no longer much difference between these examples

However, the difference still holds for more complicated cases

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 38

Anchors
Beginning anchor ̂

/^ab/

Attempt to match ̂ fails unless cursor is before the first character of the string

absinthe

 START |a b s i n t h e
 ^ |a b s i n t h e Yes!
 a |a b s i n t h e Yes!
 b <a|b s i n t h e Yes!
 END <a b>s i n t h e Yes!

By the way, I’ve been telling you a little fib up to now

It really looks like this:

 START |a b s i n t h e
 ^ |a b s i n t h e Yes!
 ab |a b s i n t h e Yes!
 END <a b>s i n t h e Yes!

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 39

Anchors
/^ab/

Attempt to match ̂ fails unless cursor is before the first character of the string

But also, the start node is altered so that the engine can only start at the beginning of
the string

grab

 START |g r a b
 ^ |g r a b Yes!
 ab |g r a b Nope

Match fails.

More about optimizations later

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 40

Anchors
Ending anchor $

/ab$/

Attempt to match $ fails unless cursor is after the last character of the string

absinthe

 START |a b s i n t h e
 ab |a b s i n t h e Yes!
 $ <a b|s i n t h e Nope
 START a|b s i n t h e
 ab a|b s i n t h e Nope
 START a b|s i n t h e
 ab a b|s i n t h e Nope
 START a b s|i n t h e
 ab a b s|i n t h e Nope

 ...

Match fails.

This simple case is of course optimized

In general, it really does do it this way

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 41

Anchors
/ab$/

Attempt to match $ fails unless cursor is after the last character of the string

grab

 START |g r a b
 ab |g r a b Nope
 START g|r a b
 ab g|r a b Nope
 START g r|a b
 ab g r|a b Yes!
 $ g r<a b| Yes!
 END g r<a b> Yes!

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 42

Common Anchor Error
/^cat|dog|fish$/

/^(cat|dog|fish)$/

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 43

The Rest of the Metacharacters

dot

. matches any character....

except newline!

Why not?

 $time = <STDIN>; # "11:29\n"
 ($minutes) = ($time =~ /:(.*)$/);

So that $minutes gets "29" and not "29\n"

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 44

The Rest of the Metacharacters

dot

This brings up a subtlety:

 $time = <STDIN>; # "11:29\n"
 ($minutes) = ($time =~ /:(.*)$/);

If . doesn’t match \n, why does this pattern match succeed?

The string ends with \n, and . won’t match \n.

Answer: $ doesn’t have to be exactly at the end. It will match at a \n that is at the
end.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 45

The Rest of the Metacharacters

dot

To make . match anything at all, even \n, use the /s modifier.

 $time = <STDIN>; # "11:29\n"
 ($minutes) = ($time =~ /:(.*)$/s);

$minutes is now "29\n" rather than "29"

This might be useful in HTML matching, for example:

 <p align=center><table align=center border=1>
 <tr><td>\d</td><td>[0-9]</td></tr>
 <tr><td>\D</td><td>[^0-9]</td></tr>
 <tr><td>\w</td><td>[A-Za-z0-9_]</td></tr>
 <tr><td>\W</td><td>[^A-Za-z0-9_]</td></tr>
 <tr><td>\s</td><td>[\t\n\f\r]</td></tr>
 <tr><td>\S</td><td>[^ \t\n\f\r]</td></tr>
 </table></p>

<table[^>]*?>.*</table> won’t match this unless you use /s

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 46

The Rest of the Metacharacters
\d \D \w \W \s \S

These are just character classes.

\d [0-9]

\D [^0-9]

\w [A-Za-z0-9_]

\W [^A-Za-z0-9_]

\s [\t\n\f\r]

\S [^ \t\n\f\r]

Actually they depend on the locale, so they’re not only shorter, they’re also safer

Example: In France, \w will match É and ï.

But [A-Za-z0-9_] only includes E and i.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 47

The Rest of the Metacharacters
 |D|o|n|’|t| |t|o|u|c|h| |t|h|a|t|!|

\b: (‘word boundary’)

It succeeds when the previous character is a \w and the next is not (or vice
versa)

 |D o n|’|t| |t o u c h| |t h a t|!

\B is the opposite:

It succeeds when the previous and next characters are both \w, or neither is \w

 D|o|n ’ t t|o|u|c|h t|h|a|t !|

Neither one will advance the cursor: They are assertions.

Both pretend that string is bounded by \W characters.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 48

Lookahead Assertions
(?=...) and (?!...) are similar to \b and \B.

They look ahead in the string to see if what follows matches ...

If so, they succeed, but don’t advance the cursor

Example: Split an email header into fields:

 Received: from ni-s.u-net.com ([193.119.182.90] helo=bactrian.ni-s.u-net.com)
 by he101war.uk.vianw.net with esmtp (Exim 3.22 #5)
 id 17H8J0-0005po-00; Sun, 09 Jun 2002 20:24:51 +0100
 Content-Disposition: inline
 Content-Transfer-Encoding: binary
 MIME-Version: 1.0
 X-Mailer: Id: //depot/mail/tkmail#119 /Perl5.008 Mail::Internet v1.46
 Subject: Re: Standard layers, documentation
 In-Reply-To: <20020609191647.GE31617@ool-18b93024.dyn.optonline.net> from
 Michael G Schwern on Sun, 09 Jun 2002 15:16:47 -0400
 Content-Type: text/plain; charset="UTF-8"
 To: schwern@pobox.com

Wrong: split /\n/

(Consider the Received line for example)

Also wrong: split /\n\S/

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 49

Lookahead Assertions
 Received: from ni-s.u-net.com ([193.119.182.90] helo=bactrian.ni-s.u-net.com)
 by he101war.uk.vianw.net with esmtp (Exim 3.22 #5)
 id 17H8J0-0005po-00; Sun, 09 Jun 2002 20:24:51 +0100
 Content-Disposition: inline

Solution:

split /\n(?!\s)/

Here’s a trick: Make a pattern that never matches:

/(?!)/

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 50

The Rest of the Metacharacters
{m,n} is straightforward now

It’s like * but keeps track of the number of matches

P{n} is the same as P{n,n}

Because it keeps track of the number in a small integer, m and n are restricted to be
between 0 and 32767.

There’s a non-greedy version {m,n}? which is rarely used

Actually X* is implemented with {m,n} for nontrivial X.

This means that ^(foo|bar)*$ wouldn’t match "foo" x 35000.

Actually the regex engine would run out of stack and dumps core before that

Sometime after 5.004_04 and at or before 5.005_02, this was fixed

n=32767 now has a special meaning; it is used internally to mean infinity

You are no longer allowed to specify 32767 explicitly

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 51

Regex Target Variables
$‘

Characters skipped before matching begins

(Always empty when ̂ is used)

$&

Matched string

$’

Characters not used after end of match

(Always empty when $ is used)

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 52

Regex Target Variables
$‘ $& $’

If your program never uses these, Perl doesn’t bother to maintain them at run time

Result: All regexes get faster

If you use them anywhere, you lose this speed benefit

Avoid them

Never use them in a module

Don’t use English

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 53

Backreferences
(and)

These also cause copying

They’re slow for the same reason as $& etc.

But they only slow the regexes that use them.

How do they work?

/(.+)/

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 54

Backreferences
Occasionally you want the grouping effect of (...) without the capturing effect

/ab+/

/(ab)+/

Use (?:...) instead

/(?:ab)+/

In Perl 6, this skanky notation will be replaced with [...]

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 55

Backreferences

Like this:

Not like this:

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 56

Backreference Numbering is Lexical
Consider:

 # $file is "report.pl" or "/usr/local/bin/report.pl"
 ($path, $name, $suff) = $file =~ m{ (.*/)?(.*)\.(.*)};

When $file is /usr/local/bin/report.pl

 /usr/local/bin/ report . pl
 -----path------ -name- suff
 $1 $2 $3

But what about when $file is report.pl and has no path?

Since the (.*/)? is ’skipped’, will (.*)\.(.*) be $1 and $2?

No. The parentheses are numbered at compile time

The value of $file cannot affect that

 report . pl
 path -name- suff
 $1 $2 $3

$path here is undefined

Similarly /(a+)|(b+)/

If there are any a’s, they will be in $1

If there are b’s but no a’s, the b’s will be in $2, and $1 will be undefined

$1 always contains the a’s; $2 always contains the b’s

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 57

Backreferences
/(\d{1,3}\.){3}(\d{1,3})/

People sometimes expect this to capture into $1, $2, $3, $4, but that’s wrong

It has only two pairs of parentheses, so it captures only $1 and $2

Why? Isn’t the {3} supposed to ‘repeat three times’?

What does it do with 130.91.6.1?

Start copying, copy the 130 into $1, stop copying, repeat
Start copying, copy the 91 into $1, stop copying, repeat
Start copying, copy the 6 into $1, stop copying, go on
Start copying, copy the 1 into $2, stop copying, end of string

End result: Only 6 is in $1.

Solution: Use m//g (coming up) or split

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 58

Backreferences
Instead of $& etc., use /^(.*?)(PATTERN)(.*)$/

Then $1, $2, $3 instead of $‘, $&, $’

Just as slow as $& etc., but doesn’t affect other regexes

Why (.*?) here?

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 59

Where Do Machines Come From?
Usually constructed at compile time

Same machine used repeatedly to match any string

When regex varies at run time, construction deferred

/$PAT/ is very slow

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 60

Run-Time Construction Disaster
Beginners like to do this:

 my @pats = (’fo*’, ’ba.’, ’w+3’);

 while (<>) {
 foreach $pat (@pats) {
 print if /$pat/;
 }
 }

Regex machine is constructed each time through the loop, then discarded

1 million lines of input---3 million constructions

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 61

Avoiding This Disaster
 push @pats, qr/$_/ for ’fo*’, ’ba.’, ’w+3’;

 while (<>) {
 foreach $pat (@pats) {
 print if /$pat/;
 }
 }

Since 5.005, regexes are first-class objects

$regex = qr/REGEX/ yields a regex object

$string =~ /$regex/ does not perform another compilation

$string =~ $regex works also

This is about 80% faster

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 62

Minor Disaster
grep

 my $pat = shift;

 while (<>) {
 print if /$pat/;
 }

Here the pattern does not vary at runtime

Perl still checks each time to see if it has changed

 my $pat = shift;

 while (<>) {
 print if /$pat/o;
 }

/o modifier promises that the pattern will never change

Perl no longer needs to check

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 63

Another Disaster
/^(\w+|::)*$/

Matches Perl identifiers like Foo and Getopt::Std.

What does it do with abcd! ?

 \w+ <a b c d> ! No good
 \w+ \w+ <a b c><d> ! Also no good
 \w+ \w+ <a b><c d> ! Also no good
 \w+ \w+ \w+ <a b><c><d> ! Still no good
 \w+ \w+ <a><b c d> ! Also no good
 \w+ \w+ \w+ <a><b c><d> ! Still no good
 \w+ \w+ \w+ <a><c d> ! Still no good
 \w+ \w+ \w+ \w+ <a><c><d> ! Guess what?
 Gives up.

This doesn’t include all the times it tried to match :: against one of the letters, or
the times it tried making * match no times, or...

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 64

Disaster Continues
/^(\w+|::)*$/

Try

 perl -Mre=debug -e ’"abcd!" =~ /^(?:\w+|::)*$/’

It generates 279 lines of diagnostic output about the backtracking that it tried before
it gave up.

 perl -Mre=debug -e ’"abcde!" =~ /^(?:\w+|::)*$/’

takes twice as long and generates twice as much: 535 lines. We would expect

 perl -Mre=debug -e ’"what_an_incredible_disaster!" =~ /^(?:\w+|::)*$/’

to take about 8,388,608 times as long and to generate 2,147,483,671 lines of output.

It doesn’t take forever, but it’s hard to tell the difference.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 65

Avoiding This Disaster
/(\w+|::)*/

Nested quantifiers are always risky

Whenever you write one, make sure you really need it

To fix this one is easy:

/(\w|::)*/

This is much more efficient --- there aren’t so many things to try.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 66

Avoiding This Disaster
/(\w|::)*/

Perhaps a more general solution involves the new (?>...) operator:

/((?>\w+)|::)*/

State is saved as usual inside the fence

But this state is discarded when the node pointer exits the fence

State can backtrack past the fenced area

But not into the fenced area

\w+ might match many different strings

(?>\w+) says that only the first choice can be correct

If the first choice doesn’t work, don’t try any other choice

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 67

Perl 6
Perl has a (deserved) reputation for having too much punctuation

A lot of that reputation is based on Perl’s regex syntax

But a lot of the regex syntax was inherited from Ken Thompson’s original
design

He used up all the brackets for things like quantification

All that was left were things like (?:...)

Perl 6 will completely overhaul its regex syntax

Patterns will become much more like BNF grammars

They will efficiently incorporate other patterns as sub-parts:

 rule octet { \d <1,3> }
 rule ip_address { <octet> [\. <octet>]<3> }

Traditional-style constructions will continue to be supported:

 $ip_address = /\d<1,3>[\.\d<1,3>]<3>/;

As will the old notation:

 $ip_address = m:p5/\d{1,3}(?:\.\d{1,3}){3}/;

See http://www.perl.com/lpt/a/2002/06/04/apo5.html for the fascinating
details

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 68

Strings that contain newlines: /s and /m
/s: Make . match newline (normally it doesn’t)

/m: Make ̂ match at beginning of line (after a newline) rather than beginning of
string, and similarly $

Example: Suppose $message contains an entire mail message.

 ($subject) = ($message =~ /^(Subject:\s+(.|\n\s)*)$/m);

Extracts Subject field.

If you use /m, use \A and \Z to get the old meanings of ^ and $: Match at beginning
or end of string only

Recall that $ normally matches before a newline at the end of the string. \Z does that
too.

If you really want to match only at the end of the string, use \z

Perl 6 will fix this mess; /s and /m are going away:

 ^ beginning of string
 $ end of string
 ^^ beginning of line
 $$ end of line
 . match any single character
 \n match a newline
 \N match any single character except a newline

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 69

Repeated Matching: /g
/g means to do the match repeatedly

with s///g, replace all occurrences (non-overlapping)

with m//g, find all matches, starting each where the previous one finished

m//g in list context returns a list of all matching strings:

 "Madagascar" =~ m/a./g; # returns (’ad’, ’ag’, ’as’, ’ar’)

Extract all the numerals from a string:

 "12-345:6 78" =~ m/\d+/g; # returns (’12’, ’345’, ’6’, ’78’)

Note that this does not return 2 or 34 or 45

Each m//g picks up where the previous match ended

Split a string into fixed-length substrings:

 @substrings = "abcdefghijklmnopqrstuvwxyz" =~ /.{1,5}/g;
 # Yields (’abcde’, ’fghij, ’klmno’, ’pqrst’, ’uvwxy’, ’z’)

Notice importance of greed here - what if we had used .{1,5}? ?

To omit z, use .{5} instead of .{1,5}

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 70

Randal’s Rule
Randal Schwartz (author of Learning
Perl) says:

Use capturing or m//g when you
know what you want to keep.

Use split when you know what you
want to throw away.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 71

Repeated Matching: /g
In scalar context, /g turns the matcher into an iterator

 while ("I like pie" =~ /\w+/ g) {
 print "<$&>\n";
 }

 <I>
 <like>
 <pie>

Each scalar has a current position

/g starts from the current position and sets it afterwards

You can get and set the current position with the pos function:

 my $s = "I like pie";
 for ($i = 0; $i < length($s); $i += 2) {
 pos($s) = $i;
 $s =~ /\w*/ g;
 print "<$&>\n";
 }

 <I>
 <like>
 <ke>
 <>
 <ie>

A failed match on a string resets its pos

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 72

Extended Format: /x
/x lets you write regexes more readably.

White space is ignored. (Use \s)

#-style comments are allowed

Extended and very practical example coming up later...

Caution: Unescaped / will still terminate the regex, even if it’s in
a comment!

 $x =~ /\d+ # numerator
 $FRAC # FRAC matches either a / or a : symbol
 \d+ # denominator
 /x;

Perl sees the / in the ’comment’ before it sees the /x

It thinks that the / ends the regex

Confusion ensues

Perl 6 will fix this: modifiers precede the pattern instead of following it

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 73

Tokenizing
Tokens are the basic syntactically meaningful portions of an input.

For example, in

print 12+3;

The tokens are print, 12, +, 3, and ;

Individual characters are not generally meaningful.

Tokenizing is the act of converting a character stream into a token stream.

Also called lexing

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 74

Tokenizing
In C, you use programs like lex to convert a description of the
legal tokens into a tokenizer program.

Or you write a program to read the input
character-by-character and run a state machine

That is not very Perl-like.

It is also not very efficient.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 75

Tokenizing
A regex is already a program for reading data character-by-character and running a
state machine

Let’s write a lexer for a calculator. It has the following tokens:

+, -, *, /, ̂ , **, (,), =

:=

Variable names: Value2, for example

Numbers with optional decimal points and scientific notation

Whitespace will be ignored except where it separates tokens

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 76

Tokenizing
Our trick:

 split /(a+)/, $string

This breaks $string into pieces which alternate between

Strings of a’s

The other stuff that was between the a’s

Note special split meaning of (capturing parentheses).

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 77

Tokenizing
The tokenizer:

 sub tokens {
 my @tokens =
 split m{(
 ** | := # ** or := operator
 |
 [-+*/^()=] # some other operator
 |
 [A-Za-z]\w* # Identifier
 |
 \d*\.\d+(?:[Ee]\d+)? # Decimal number
 |
 \d+ # Integer
)}x, shift();
 grep /\S/, @tokens;
 }

Easy to understand and to change, efficient, predictable.

Behaves very much like similar lex-generated parsers

This is why we need /x:

 split
 m{(**|:=|[-+*/^()=]|[A-Za-z]\w*|\d*\.\d+(?:[Ee]\d+)?|\d+)},
 shift();

Note that the order of the | alternatives is important

Is ** one token or two? What about 12.23?

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 78

Tokenizing
A different version of the same thing:

 my $s;
 sub set_string {
 $s = shift;
 }

 sub next_token {
 return POWER if $s =~ /\G**/gc;
 return ASSIGNMENT if $s =~ /\G:=/gc;
 return "OP $1" if $s =~ /\G([-+*/^()=])/gc;
 return IDENT if $s =~ /\G[A-Za-z]\w*/gc;
 return FLOAT if $s =~ /\G\d*\.\d+(?:[Ee]\d+)?/gc;
 return INT if $s =~ /\G\d+/gc;
 return next_token() if $s =~ /\G\s+/gc;
 return BAD_CHAR if $s =~ /\G./gc;
 }

This uses the /gc modifier with \G

\G anchors the match to occur at the current pos()

Rather than somewhere to the right of it as usual

Normally, the pos() is discarded if the match fails

/c disables this misfeature

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 79

Optimizations
Common cases are heavily optimized

/literal/ doesn’t use the regex engine

Instead, it does a Boyer-Moore search

/^PAT/ never advances the cursor

/PAT$/ starts at the correct place if the length of the result is known

If the target string is too short, the regex engine is never invoked

/(fish|dog){7,12}\s+/ cannot match any string shorter than 22 characters

When in doubt, benchmark!

-Mre=debug is helpful here also

The /i modifier makes the match case-insensitive

It tends to disable optimizations

Use it sparingly

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 80

Optimizations
Since 5.6, Perl has had a very clever floating-anchored search

It tries to locate two long strings which must be in the target

It searches for these first, then works inward

For example, in

 "----B----A---" =~ /A-*B/

Perl looks first for A, then for B

It figures out that there’s only one A

There’s no consistent choice for B, so it fails immediately

No backtracking search

 "----A----B---" =~ /A-*B/

Here Perl locates the A immediately, and skips the preceding characters

For fullest details, see perldebguts and perl -Mre=debug output

/i disables this --- avoid it

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 81

Optimizations
Since 5.6, Perl has treated .*, .+, .*?, and .+? specially

When they are followed by some literal string...

...the engine is smarter about how many repetitions might work

As a result, this example is no longer slow:

/".*?"/

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 82

More New Metacharacters
These all appeared in 5.005

(?{CODE}) embeds arbitrary code into a regex

The code is executed when the node pointer passes through it

It matches the empty string and always succeeds

(?(CONDITION)YES|NO) evaluates the condition

If true, try to match YES, else NO

omit NO, it defaults to nothing

CONDITION can be a (?{CODE}) expression

Example: Match strings where (...) are balanced

(The holy grail of regular expressions.)

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 83

Matching Strings with Balanced Parentheses
How does a human decide that ((I)(like(pie))!) is balanced?

 ((I) (l i k e (p i e)) !)
 1 2 1 2 3 2 1 0

That’s what we’ll do:

 ^
 (?{ local $d=0 }) # Set depth to 0
 (?:
 \(# When you see an open parenthesis...
 (?{$d++}) # ...increment the depth
 |
 \) # or you could see a close parenthesis...
 (?{$d--}) # ...in which case decrement the depth...
 (? # ...and check...
 (?{$d<0}) # ...if there was no matching open paren...
 (?!) # ...then fail.
)
 |
 (?> [^()]*) # or you could see some non-parenthesis text
 # (but don’t bother backtracking into it)
)*
 # After you match as much as possible...
 (? # ...check to see if...
 (?{$d!=0}) # ...there were unmatched open parentheses...
 (?!) # ...if so then fail.
)
 $

/x was essential here:

^(?{local$d=0})(?:\((?{$d++})|\)(?{$d--})(?(?{$d<0})(?!))|(?>[^()]*))*(?(?{$d!=0})(?!))$

Similarly: Recognize palindromes:

/^(.*).?(?>(.*))(?(?{$1 ne reverse $2})(?!))/

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 84

Thanks!
More information:

Mastering Regular Expressions (Jeffrey E. F. Friedl; O’Reilly & Associates)

A new and wonderful second edition was released in July 2002

perlre manual page (reference and definitions)

http://www.perldoc.com/perl5.8.0/pod/perlre.html

perlop manual page (examples; details of s/// and m// and their modifiers)

http://www.perldoc.com/perl5.8.0/pod/perlop.html

perlretut and perlrequick tutorials (new in 5.6.1)

http://www.perldoc.com/perl5.8.0/pod/perlretut.html

http://www.perldoc.com/perl5.8.0/pod/perlrequick.html

perlfaq6 - frequently asked questions

http://www.perldoc.com/perl5.8.0/pod/perlfaq6.html

Perl Cookbook (Christiansen and Torkington; O’Reilly & Associates)

Chapter 6 especially

Apocalypse 5: Regexes in Perl 6

http://www.perl.com/pub/a/2002/06/04/apo5.html

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 85

Residue of the Regexes
These talks evolve over time

Old slides move out, new ones come in

You might as well see the slides that were dropped

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 86

Word Boundary Assertion
/.*\b.+/

What ho?

 START |W h a t . h o ?
 . |W h a t . h o ? Yes!
 * <W|h a t . h o ?
 . <W|h a t . h o ? Yes!
 * <W h|a t . h o ?

 ...

 . <W h a t . h|o ? Yes!
 * <W h a t . h o|?
 . <W h a t . h o|? Yes!
 * <W h a t . h o ?|
 . <W h a t . h o ?| Nope
 \b <W h a t . h o ?| Nope
 \b <W h a t . h o|? Yes!
 . <W h a t . h o|? Yes!
 + <W h a t . h o ?|
 . <W h a t . h o ?| Nope
 END <W h a t . h o ?> Yes!

Maybe it’s a little surprising that the word boundary it found was the one in the o?

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 87

New Features: POSIX and Unicode Character
Classes

[:space:] matches a whitespace character

Anything that would test true with the C isspace function

\P{IsSpace} matches any Unicode character that possesses the IsSpace property

This is new in 5.6.0.

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 88

Upcoming Enhancements?
‘Onion rings’

Match occurrences of PATTERN2 but only when it occurs inside something that also
matches PATTERN1

For example:

 (?<> <[^>]*> # Inside an HTML tag expression...
 \w+ = \w+ # Match an attribute=value pair
)x # But otherwise attribute=value is not allowed.

This might change before it actually puts in an appearance.

Didn’t get into 5.8; maybe 5.10?

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 89

Tokenizing
We can get rid of that grep:

 sub tokens {
 split m{(
 ** | := # ** or := operator
 |
 [-+*/^()=] # some other operator
 |
 [A-Za-z]\w* # Identifier
 |
 \d*\.\d+(?:[Ee]\d+)? # Decimal number
 |
 \d+ # Integer
)
 |
 \s+
 }x, shift();
 }

(Thanks to Andy Wardley.)

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 90

Lookahead Assertions
(?=...) and (?!...) are similar to \b and \B.

They look ahead in the string to see if what follows matches ...

If so, they succeed, but don’t advance the cursor

Example: Match everything from <= up to next =>

Wrong: <=.*=>

(Consider <=foo bar => baz =>)

Solution:

/<=((?!=>).)*)=>/

Here’s a trick: Make a pattern that never matches:

/(?!)/

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 91

Backreferences
/(?:(\d*)\s*)+/

Here’s a FAQ:

If you try to match 12 34 56, only the 56 goes into $1.

Why? Isn’t the + supposed to ‘repeat’?

What does it do?

Start copying, copy the 12 into $1, stop copying, repeat

Start copying, copy the 34 into $1, stop copying, repeat

Start copying, copy the 56 into $1, stop copying, end of string

End result: Only 56 is in $1.

Solutions:

Use split

Use m//g (coming up)

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 92

Randal’s Rule
For example:

 Newsgroups: comp.lang.perl.moderated
 Subject: perl question
 Date: Tue, 04 Feb 2003 21:52:02 GMT

 I have a perl question, I have this as

 $string = ((!TM)*A)|(TM*(((!TASEL)*TAA)|((TASEL)*TAB))) ;

 I want this to be seperated as TM, A, TM, TASEL, TAA, TASEL,
 TAB. How do i do it ?

 Thanks in advance ?
 perluser99

Once I figured out what the question was, the answer was just

 @parts = $string =~ m/[A-Z]+/g;

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 93

Digression for a Practical Application
Let’s apply what we know

Someone showed up on IRC asking this today:

‘‘How do I remove the characters from the last x to the end?’’

 s/x.*//; # WRONG

 s/(.*)x.*/$1/; # Right, but slow

 s/x[^x]*//; # WRONG

 s/x[^x]*$//; # Ahhhh. (1/3 faster)

End of digression

Next Copyright © 2003 M. J. Dominus

Next Regular Expression Mastery 94

Option
/X?/

Also there’s a non-greedy version X??

I used to pay US$60 for a live sighting of ?? in the wild

But one day I thought of

 if ($option =~ /^-f(i(e(ld??)??)??)??$/) {
 ...
 }

Next Copyright © 2003 M. J. Dominus

