This file is copyright © 2006 Mark Jason Domin
Unauthorized distribution in any medium is
absolutely forbidden.

1. Date Formatting

2. The Main Loop

3. Skipping Duplicate Items

4. Loop Hoisting

5. File-Scopewy Variables

6. Diagnostics

7. Hardwired Source and Destination

1. Warnings

8. chop

9. Variable Use Immediately Follows Assignment
10. Taking Two Steps Forward and One Step Back

1. Adding Another Field at the End
2. More Splitting
3. A Note Aboutspl i t

11. Summary

Domain Zone Checking

The subject of this chapter is a program catlestkzonesl| oaded. it was provided to me once when
was teaching the class for a large company in Europe; it had been written by one of their emplo
author was not the person who sent it to me, and was not an attendee of the class; it was contri
one of their co-workers. The co-worker was careful not to identify the program’s author, but the
program contained a dead giveaway: it cannot possibly work unless it is run by B. Wilkinson. Fr
we might infer that it was written by B. Wilkinson.

The purpose of the program is to take a file for a list of a domain names and to check on a locl |
serve to make sure the records for each zone are available.

Sometimes programs contributed by class attendees are turgid and unreadable, but often they’l
clear. This one was quite clear. Nevertheless, | was able to cut it down by about half. The comg
is Program ??7.

Date Formatting

The first thing that jumped out at me was thenat Dat e() function. It returns a string like
17/ 03/ 2003 or likeMon 17 Mar 2003 02: 38: 36 depending on whether its argument is the string
short orl ong. Here’s the code:

sub format Dat e()
{

ny ($format) = @;

ny $curdate;
get date el enents
ny @inme = localtineg;
ny $secs = $tinme[0];
ny $mns = $tine[l];
ny $hour = $tine[2];
ny $dom = S$tine[3];
ny $non = $tineg[4] + 1
ny $nonth = ("Jan","Feb","Mar","Apr", " May", "Jun",
"Jul ", "Aug", " Sep","Cct", "Nov", "Dec")[$tinme[4]];
ny $year = 1900 + $tine[5];
my $dow = ("Sun","Mon","Tue","Wed","Thu","Fri","Sat")[$tine[6]];

now format them as required
if ($format eq "short"){
$curdate = sprintf("o02d/ ¥2d/ %", $dom S$non, $year);

}
elsif ($format eq "long") {
$curdate = sprintf("% 9%2d % % %02d: ¥92d: ¥92d",
$dow, $dom $nont h, $year, $hour, $m ns, $secs) ;

el se {
$curdate = "";
}

return $curdate;

}

Almost everyone has had the misfortune to write a function of this type. In classes, | always ask
audience how many of them have written a date-formatting function like this one and | always g
of hands. But there is a better way.

Standard with Perl, since version 5.000, is a big module qatigk. ThepPasl X module contains a lo
of standard utility functions that are mandated byrt& X operating system standard but that are n
available in Perl's core. For example, Perl has a sine funeétion)() and a cosine functiords()) but
no tangent function. Where’s the tangent functiom@dt x: : t an. Perl has annt () function to discar
the factional part of a number, but what if you want the number rounded up to the nearest integ
PCSI X: : cei | . (Short for "ceiling".)

Probably the most useful functionrasl X isstrftime(), which is short for "format the time as a
string”.strftinme() is analogous tpri ntf: you give it a format specifier and a date, and it format:
date according to the specifieer. For example:

stritinme("%: 9% %", localtine);
returns "02: 38: 36"

strftinme("%A, % %", localtine);
returns "Mnday, 17 Mar"

Instrftime() codes, the program’s short date formatis¥m % and its long date format s % %
uwr 9. Here’s a summary of the escape codes we've used:

%a abbrevi ated nanme of the weekday

%A full name of the weekday

% abbrevi ated nanme of the nonth

"B full name of the nmonth

%l day of the month (2-digit)

% like %, but with | eading space instead of leading O
% hour of the day (2-digit)

%m nont h nunber (2-digit)

9 m nut e

oar 24-hour time of day (abbreviation for "%: %v %")

%y two-digit year

%Y four-digit year

There are many others; see the manual for full details.

If we usestrftinme() to handle the formatting chores, most of mat Dat e() can be eliminated:

sub format Dat e()

{
ny ($format) = @;
ny %ormats = (short => "%/ % %", # 17/ 03/ 2003
long => "% % % % %", # Mon 17 Mar 2003 02: 38: 36
)
return strftime($formats{$format} || "", localtine);
}

18 lines have become 6. It has also become easy to extend Dat e() to handle other formats; jus
insert more entries into thé or mat s hash:

ny %¥ormts = (

short => "o/ % %", # 17/ 03/ 2003

natural => "%", # (locally preferred date fornat)
| ong => "% % % % %I, # Mon 17 Mar 2003 02: 38: 36

letter => "0A % 98", # Monday, 4 March

);

Note also how clear the explanatory comments are. Somethingiikeé7 Mar 2003 02: 38:36 IS
much easier to read and understand than somethingplikéom nmon year time, because it's easier
see than to think. | think this also illustrates what | callfth& maxim of documentation, which says
that an ounce of examples is worth a pound of specifications.

TheMain Loop

Now I'll tackle the main part of the program. The first red flag | saw was:

69 if (exists $dommi ns{$domai n}){
70 next ;
71 }
72 el se {
the entire rest of the program...
98 }

This isThe Condition that Ate Michigan. Theel se part of the f block has swallowed thentire
program whole.

figure 3.1:M chi gan

The easy rewrite in this case is to turnithdest into a statement modifier:

next if exists $domai ns{$donai n};

the rest of the program...

If we do this, everything moves closer to the left-hand margin. When you read, your eye likes to
down smoothly down the left-hand margin. Things are harder to see when they are farther to th
you should try t&keep nor mal control flow closeto the left-hand margin. This minimizes eye
movement and improves readability; it's why newspaper copy, which has a lot of small type, is ¢
narrow columns.

Sidebar: The Condition that Ate Michigan
Here’s another example of The Condition that Ate Michigan

Subj ect: Apply Regex In Place
Message- | D: <1YW?7. 64617%$0x. 22955187@ yphoon. sout heast . rr. conp

sub each_file {
if (-Ts$_) {
print "processing $File::Find::name\n";
if (open F, "<& ") {
ny $s = <F>;
cl ose F;
if (open F, "> %") {
$s =~ s/ COLUMNL/ COLUMNL/ i g;
print F $s;
cl ose F;

el se {
print "Error opening file for wite: $/\n";

el se {
print "Error opening file for read: $!'\n";
}
}
}

Here the entire function has been gobbled up by the ravenouscondition. Readability suffers as a result. Quick!)
thei f -T have arel se clause?

Instead, we can write:

Subj ect: Apply Regex In Place
Message- | D: <1YW?7. 64617%$0x. 22955187@ yphoon. sout heast . rr. conp

sub each_file {
return unless -T $_;

print "processing $File::Find::name\n";

}

and it becomes immediately apparent that the function simply ignores non-text files.

Sidebar: The Great Pyramid

figure 3.2:pyrani ds
The very day after | first recognized this red flag, | met the following exampterin| ang. per| . ni sc:

Subj ect: Quicker way pyrami dsto | oop through directories?
Message- | D <9qlf 65%ht 6@ewt on. cc.rl.ac. uk>

if(opendir(DIR "f:/list-1ogs"))
while($dir = readdir(D R))

-~

{ if(-d "f:/list-logs/$dir" and $dir ne "." and $dir ne "..")
i f(opendir(SUB, "$listlogs/$dir"))
while($file = readdir(SUB))
{ if($file =~ /\.log.+/i)
$total += -s "$listlogs/$dir/$file";

}
cl osedi r (SUB) ;

}

E:I osedir(DIR);
}

Wowzers! That's a lot of context you have to remember by the time you get to the pharaoh’s burial chaber in the
Perhaps this is better:

ir(DR, "f:/list-logs" or die ...;
($dir = readdir (D R))

next if $dir eq "." or $dir eq "..";
next unless -d "f:/list-1ogs/$dir";

opendir(SUB, "$listlogs/$dir") or next;
while($file = readdir(SUB))
{

next unless $file =~ /\.log.+/i;
$total += -s "$listlogs/$dir/$file";

}
cl osedi r (SUB) ;

E:I osedir(DIR);

(If you disagree, that's OK.)

Here’s another variation on that innermost loop:

for (grep /\.log.+/i, readdir(SUB))
$total += -s "$listlogs/$dir/$_";

Which of the three variations do you like best? Which do you like least? Rementhetit tooth ways.

Skipping Duplicate Items

The program now has:

ignore this one if it has already been processed
next if exists $donmai ns{$domai n};

$domai ns{ $domai n} = $domai n;

This is a fairly ordinary use of a hash to recognize duplicate items, but it confused me. What is 1
value used for? | investigated, and found that it wasn’t used for anything. | would have been les

confused by:
$domai ns{ $domai n} = 1;

One very frequently-seen idiom for this kind of task is:

next if $seen{$domai n}++;
Also, domain names are case-insensitive, so we probably want:

next if $seen{lc $domai n}++;

L oop Hoisting
Next, | got to wondering about this:
77 # set up resol ver object
78 ny $res = new Net::DNS:: Resol ver;
79 $r es->naneser ver s(SNAVESERVER) ; # search 1 ns only

The main loop builds a neMet : : DNS: : Resol ver object for each input line. Why do it repeatedly?

Code in a loop that doesn’t depend in any way on the data being looped over iscatiedt.
Invariant code can often wisted out of the loop:

set up resol ver object
ny $res = new Net::DNS:: Resol ver;
$r es- >naneser ver s($NAMESERVER) ; # search 1 ns only

43 print "Start: ".formatDate("long")."\n";

Here we’ve removed the initialization of thees object from the loop, butting it up toward the top ¢
the program. This makes the loop easier to understand by making it smaller; it may also be frac
more efficient.

File-Scope ny Variables

Since I'm in the vicinity, let’s look at lines 36--41:

36 ny Y%een;
37 ny $donmi n;
38 ny $rr;

39 ny $query;
40 ny $records;
41 ny $null;

We've seen this before. Why are all these variables declared at file scope? To answer this ques
searched the program to find out where the variables were used. It turned sut thaécor ds, and
$nul I werenot used, so that's three more lines of code gone with no gross cost at all.

$donai n is private to the main loop, so that is where it should be declared. We can eliminate the
file-scopeny declaration completely just by slappingyaon the first appearance $domai n inside the
loop. Line 64 becomes:

64 [Cnmy] C] $domain = $inprecord[0];

$query is the same:
82 [Cnmy]C $query = $res->query($domai n, "NS");

Lines 37--41 have gone away completely.

Diagnostics
We've seen diagnostics like these before:

43 print "Start: ".formatDate("long")."\n";

105 print "End: ".formatDate("long")."\n";

They are being sent 8rDoUT, but it's almost always preferable to send diagnostissmarr. That
way, if the program’s output is directed into a file, the diagnostics don’t vanish into the file; they
the terminal where someone can see them. If the program’s output is directed into a pipe to anc
program, the diagnostics don’t go into the pipe where they will confuse the other program or ha
filtered out; they stay on the terminal where someone can see them. ThisSsDERY was invented.
So | would prefer:

[warn]C] "Start: ".formatDate("long")."\n";

[Qwarn]C] "End: ".formatDate("long")."\n";

Hardwired Sour ce and Destination

27 ny $DOMLI ST
28 ny $QUTLI ST

"/ export/ home/ bwi

bwi | ki ns/ dnsmu/ scri pts/testzones. 2";
"/ export/ hone/ bwi |

i ns/dnsnmu/ scri pts/testzones. 3";

45 open(DOVFILE, "<$DOM.IST") ||
46 open(OUTFILE, ">$OUTLIST") ||
52 while (<DOVFILE>)

e "Can't open the file $DOWLI ST: $!'\n"
e "Can't open the file $OUTLI ST: $!'\ n"

97 print OUTFILE "$outrecord\n";

Since the program is hardwired to get its input from one particular file, and to write its output to
particular file, no matter what, it can be run only by B. Wilkinson, who happens to own those twt
Nobody else can use it. This is how we can infer that the author is B. Wilkinson.

However the source and destination need not be limitations of the program. Perl makes it easy
programs with flexible input and output conventions.

First, change these:

52 while (<DOWFI LE>)

97 print OUTFILE "$outrecord\n";
to these:

while (<>)

print "$outrecord\n";

Now the program reads from standard input, or from the files nam@eav, and writes to standard
output. Wilkinson can get the original behavior by executing the command:

checkzonesl oaded ~/ dnsnu/scripts/testzones.2 > ~/dnsnu/scripts/testzones. 3

If the input or the output files move, the program will works, and other people can run the progr:
their own files.

If Wilkinson doesn’t want to write that entire command line, he should consider something like t|

@A\RGV = ($DOM.I ST) unl ess @ARGV;
open STDOQUT, ">$QUTLIST" if -t STDOUT

This will default the input file list and output destination if they are unspecified. If Wilkinson is wi
to type the long command line, we can get rid of the variainiag | ST andsoutLl ST entirely, along
with a pile ofopen andcl ose machinery.

Warnings

Many people will insist vociferously and dogmatically that you must always use Reflagy under all
circumstances. | will not so insist. It is a tool, and, like other tools, you should try it out and decic
yourself when its use is appropriate. But it's almost always helpful to run this command:

perl -wc yourprogramp

This performs a basic syntax check and issues static (compile-time) warnings without actually ri
the program. If there are any warnings, the next step is to try to understand what they mean, an
they indicate that anything is wrong with the program.

In this case, we get several warnings. The first one is:

defined(@rray) is deprecated at
/usr/local/lib/perl5/site perl/5.6.1/ Net/DNS.pmline 137.
(Maybe you should just onit the defined()?)

This is not our problem; it is an error in the : : DNS module.

The next warnings are:

main::formatDate() called too early to check prototype
at checkzonesl oaded. pl [ine 43.

main: :formatDate() called too early to check prototype
at checkzonesl oaded. pl |ine 49.

main::formatDate() called too early to check prototype
at checkzonesl oaded. pl Iine 105.

"Prototype?" What prototype?

It turns out that Perl is complaining about the parentheses in:

118 sub formatDate[C[()] C
119 {

149 '}
The Perl syntax for defining functions is:

sub format Dat e

{
}

The extra) is interpreted as prototype, describing the format of the intended arguments. In this ¢
the empty parentheses mean that there will be no arguments. Had this been enforced, the func
have been broken, becausedoavant to calf or mat Dat e() with no arguments. Fortunately, the
prototype was inoperative in this case, because Perl had compiled the foallsatmat e before it saw
the prototype. By the time it found out that mat Dat e was supposed to be called with no argumen
was too late to enforce that; all it could do was warn us that it was too late.

Had the prototype been operative, say because the function was defined before the calls, inste:
we would have gotten a fatal error:

Too many arguments for nain::fornmatDate
at checkzonesl oaded line 42, near ""long")"
Too many arguments for rmain::fornmatDate
at checkzonesl oaded |ine 45, near ""short")"
Too many arguments for nain::fornmatDate
at checkzonesl oaded line 77, near ""long")"
Executi on of checkzonesl oaded aborted due to conpilation errors.

Perl has too much punctuation, and it's easy to slip up and put in some extra that isn’t needed,
if you are used to programming in C, which has a slightly different syntax. | missed this error toc
-w pointed it out to me.wis good for catching this sort of thing.

There’s one last warning we get from fieel -wc check:

Nane "mai n:: DOVMLI ST" used only once: possible typo
at checkzonesl oaded |ine 103.

Perl warns any time you use a variable only once, because such usages are rarely correct. You
need to access a variable at least twice: once to store a value in it, and once to read the value t
Or, if the variable is a filehandle, as it is here, you need to mention it once to open it, and then &
once more to read or write it. Here’s the line 103 that Perl is warnings us about:

103 cl ose DOWMLI ST
Here’s where we opened that handle:

45 open(DOM C FILE]C], "<$DOWMLIST") || die "Can't open the file $DOWMLI ST
Oops!

Anyway, if we go with my idea for more flexible input and output of the previous section, we car
of theopens andcl oses entirely.

chop
54 chop $_;

Thechop function is almost entirely obsolete. It was originally intended to remove a trailing recol
terminator sequence from an input line. It was invented on Unix systems, where the terminator :
was a single\ n" character, sohop simply removes the last character from its argument. But as F
spread to other systems, people realized that this wasn’t always the right behavior. On some sy
terminator sequence isn't a single character; typically; \t$n" .

Even under Unix, the behavior @fop isn’t exactly right. Sometimes a text file doesn’t end with &
character; then callinghop on the last record discards a legitimate data character and garbles the

In Perl 5, thechonp function was introduced to repair these defects. It always removes the appro
record terminator sequence, (as defined/Qybut only if there was one to remox@op should almos
always be replaced witdhonp:

chomp $_
Variable Use Immediately Follows Assignment

Well, actually not. | thought that was what this was:
62 my @nprecord = split(",", $);
2431 $domai n = $i nprecord[0] ;
And | was planning to replace this with:
my ($dommin) = split(",", $_);

but | was mistaken, becau@apr ecor d is used later on:

85 if ($query)

86 {

87 push (@ nprecord, $query->header->aa);
88

89 el se

90 {

91 push(@ nprecord, "-");

92 }

93

94 ny $outrecord .= join (",", @nprecord);

Oh well.

Taking Two Steps Forward and One Step Back

But then | got to wondering about the i t andj oi n:

62 nmy @nprecord = split(",", $);

94 ny $outrecord .= join (",", @nprecord);

Why split the record apart if we know that we’re just going to have to put it back together again”

Often when you ask that question, the answer is "no reason at all", and you get an easy opportt
simplify the code; we’ll see some later on. But on this case the question has two reasonable an:

First, we need to split up the record becasemi n is its first field, and we need to do something v
the domain. And second, we need to dg thien to attach a new field to the end of the record:

87 push (@ nprecord, $query->header->aa);

But let’'s see what happens if we try to avoiddhei t -j oi n anyway; maybe it will turn out to be
simpler than what we havelry it both ways.) We'll deal with the second issue first.

Adding Another Field at the End

The code that deals with this goes like this:

62 ny @nprecord = split(",", $);

85 if ($query)

86 {

87 push (@ nprecord, $query->header->aa);
88 }

89 el se

90 {

91 push(@ nprecord, "-");

92

93

94 ny $outrecord .= join (",", @nprecord);
95

96 # print results

97 print OUTFILE "$outrecord\n”;

All we're doing is adding some extra data to the end of each record, so we could replace the co
this:

if ($query)
print $_, ",", $query->header->aa, "\n";
el se

print $, ",", "-", "\ n";
}

Or, in the interests of trying #void excess punctuation, perhaps this version:
if ($query)
print "$_,", $query->header->aa, "\n";
el se

print "$_,-\n";

}
Which do you prefer?

Sidebar: Compression
Factoring out the common code from this pair of blocks gives us something lie this:

print $_, ",";
if ($query)

print $query->header - >aa;
el se
print "-"
print "\n";
Or we might even replace the--el se with 2: and write:

print $_, ",", $query ? $query->header->aa : "-", "\n";

Which variation do you think is best?

More Splitting

There were two reasons that we had to split the input records; we dealt with the second which v
we needed to add new data to the end of each record. #1 was that the program needs to do sol
with the domain field, which is the first field of the input record:

64 $domai n = $i nprecord[0] ;

Here we can’t avoid thepl i t (at least, not without replacing it with something worse, like a rege
match), but wean avoid splitting the entire record:

my ($domain) = split(",", $_);

Perl optimizes this so that instead of splitting it up on every comma it only splits the record on tt
comma, which is all that is needed.

Now we can eliminate th@ npr ecor d variable entirely, getting rid of three more lines of code.

Sidebar: Taking Two Steps Forward and One Step Back

Here’s a smaller example ofki ng two steps forward and one step back| R

54 chop $_;

55

56 # wite comments lines direct to output file
57 if (/")

58 print OUTFILE "$_\n";

59 next;

60 }

Here we remove the newline fragn on line 54 and put it back at line 58. Would it be better to

wite comments lines direct to output file
if (/™)

print;

next ;

}
chop $_;

I’'m honestly not sure. What do you think?

this:

A Note About spl i t

| get nervous whenever | see this:
split(",", $)

The reason is that I've seen too many people ask why this doesn’t work:
split("|", $)

For example:

Date: Mon, 9 Aug 1999 23:33:15 -0400
Subject: Help - Split Function Blowing My M nd Awnay!!
Message-1d: <alNr3.57892%j1.36696862@ewscont ent-01. sprint.ca>

Pl ease consider the follow ng function:
sub witeEntry

@ecord = split("]",%$[0]);
foreach $field (@ecord)

print "$field
\n";
}
}

During debugging | have printed the value of $ [0] and it's as
expected. The value is:

Derek Battans| Mail Address Here| URL Here| Comment Here

When | do the print in the foreach loop | get each character
as an elenment of the array @ecord. Wy isn’'t the string
being split with the pipe as the delimter?

Or for example:

Date: Wed, 06 Dec 2000 02:35:59 GV
Subject: Problemw th split using
Message- 1 d: <slrn92r9a8. 15c. t om hof f nann@ ocal host . | ocal donmai n>

When | split the following string on the "|" character, it
splits into 35 array elenents. Wien | change the "|" to a
"," and split on the comma, it splits into the 7 fields I

expect, but | can not figure out why splitting on "|" does

not give the sane result.
The pertinent code is:

$uni dat a
@ni dat a

| 0000 0000| CI 78-00727| 19780126| | DV| |’ ;
split ("|", $unidata);

Or for example:

Date: Wed, 12 Jun 2002 11:19:32 -0400
Subject: How to split with "|"?
Message-1d: <3D076684. 6060900@rai | . med. upenn. edu?

How to split with "|"? Wen | used "@ist = split("|",
$string)", @ist turned out to be a single char list.

So what'’s going on in cases like this one?
Subject: Help - Split Function Blowing My M nd Awnay!!
@ecord = split("]",$_[0]);

The quote marks have confused the author. The quote marks make it look as though the first ar
split is astring, but it isn't; it's a regex. Even if you write it with quote marks, it’s still a regex} A
is special in regexes. Thel it call above is treated as if it had been:

@ecord =split(/|/, $.[0]);

and now the problem is apparent; the pattern being split on is empty-string-or-empty-string. Anc
common problem of this type occurs wati i t (".", $var), where the is a regex metacharacter t
matches any single character.

Returning tacheckzonesl oaded, we have:
split(",", $)

Here Perl pretends that we wreig it (/,/, $_) anyway. In this case it didn’t matter, because col
is not special inside of regexes. But it seems simplest to just use with spl i t to avoid confusion;
the first argument is a regex, so we should write it like a regex. So I'll replace this line with:

split(/,/, $))

There’s one exception to this descriptiorspfit:split " ", ... isaweird special case. Instead
behaving likesplit / /, ..., itbehaves likeplit /\s+/, ...---except that it also discards leac
null fields. This feature was put in to emulate the corresponding feataw ,dfut the syntax Larry
chose isn’'t one of his better inspirations.

Summary

The original version ofheckzonesl oaded. pI was 61 lines long; the finished version is only 30. Tt
modified version does the same things, but it's missing a few potential bugs, it might be a tiny b
and | think it's easier to read.

Chapter 2 | TOP

