
This file is copyright © 2006 Mark Jason Dominus.
Unauthorized distribution in any medium is
absolutely forbidden.

1. Date Formatting
2. The Main Loop
3. Skipping Duplicate Items
4. Loop Hoisting
5. File-Scope my Variables
6. Diagnostics
7. Hardwired Source and Destination

1. Warnings
8. chop
9. Variable Use Immediately Follows Assignment

10. Taking Two Steps Forward and One Step Back
1. Adding Another Field at the End
2. More Splitting
3. A Note About split

11. Summary

Domain Zone Checking
The subject of this chapter is a program called checkzonesloaded. it was provided to me once when I
was teaching the class for a large company in Europe; it had been written by one of their employees. The
author was not the person who sent it to me, and was not an attendee of the class; it was contributed by
one of their co-workers. The co-worker was careful not to identify the program’s author, but the
program contained a dead giveaway: it cannot possibly work unless it is run by B. Wilkinson. From this,
we might infer that it was written by B. Wilkinson.

The purpose of the program is to take a file for a list of a domain names and to check on a locl name
serve to make sure the records for each zone are available.

Sometimes programs contributed by class attendees are turgid and unreadable, but often they’re quite
clear. This one was quite clear. Nevertheless, I was able to cut it down by about half. The complete code
is Program ???.

Date Formatting

The first thing that jumped out at me was the formatDate() function. It returns a string like
17/03/2003 or like Mon 17 Mar 2003 02:38:36 depending on whether its argument is the string
short or long. Here’s the code:

 sub formatDate()
 {

 my ($format) = @_;

 my $curdate;

 # get date elements
 my @time = localtime;
 my $secs = $time[0];
 my $mins = $time[1];
 my $hour = $time[2];
 my $dom = $time[3];
 my $mon = $time[4] + 1;
 my $month = ("Jan","Feb","Mar","Apr","May","Jun",
 "Jul","Aug","Sep","Oct","Nov","Dec")[$time[4]];
 my $year = 1900 + $time[5];
 my $dow = ("Sun","Mon","Tue","Wed","Thu","Fri","Sat")[$time[6]];

 # now format them as required
 if ($format eq "short"){
 $curdate = sprintf("%02d/%02d/%s", $dom, $mon, $year);
 }
 elsif ($format eq "long") {
 $curdate = sprintf("%s %2d %s %d %02d:%02d:%02d",
 $dow,$dom,$month,$year,$hour,$mins,$secs);
 }
 else {
 $curdate = "";
 }

 return $curdate;
 }

Almost everyone has had the misfortune to write a function of this type. In classes, I always ask the
audience how many of them have written a date-formatting function like this one and I always get lots
of hands. But there is a better way.

Standard with Perl, since version 5.000, is a big module called POSIX. The POSIX module contains a lot
of standard utility functions that are mandated by the POSIX operating system standard but that are not
available in Perl’s core. For example, Perl has a sine function (sin()) and a cosine function (cos()) but
no tangent function. Where’s the tangent function? It POSIX::tan. Perl has an int() function to discard
the factional part of a number, but what if you want the number rounded up to the nearest integer? It’s
POSIX::ceil. (Short for "ceiling".)

Probably the most useful function in POSIX is strftime(), which is short for "format the time as a
string". strftime() is analogous to printf: you give it a format specifier and a date, and it formats the
date according to the specifieer. For example:

 strftime("%h:%M:%s", localtime);
 # returns "02:38:36"

 strftime("%A, %d %b", localtime);
 # returns "Monday, 17 Mar"

In strftime() codes, the program’s short date format is %d/%m/%Y and its long date format is %a %d %b

%Y %T. Here’s a summary of the escape codes we’ve used:

 %a abbreviated name of the weekday

 %A full name of the weekday
 %b abbreviated name of the month
 %B full name of the month
 %d day of the month (2-digit)
 %e like %d, but with leading space instead of leading 0
 %h hour of the day (2-digit)
 %m month number (2-digit)
 %M minute
 %T 24-hour time of day (abbreviation for "%h:%M:%s")
 %y two-digit year
 %Y four-digit year

There are many others; see the manual for full details.

If we use strftime() to handle the formatting chores, most of formatDate() can be eliminated:

 sub formatDate()
 {
 my ($format) = @_;
 my %formats = (short => "%d/%m/%Y", # 17/03/2003
 long => "%e %d %b %Y %T", # Mon 17 Mar 2003 02:38:36
);
 return strftime($formats{$format} || "", localtime);
 }

18 lines have become 6. It has also become easy to extend formatDate() to handle other formats; just
insert more entries into the %formats hash:

 my %formats = (
 short => "%d/%m/%Y", # 17/03/2003
 natural => "%c", # (locally preferred date format)
 long => "%a %d %b %Y %T", # Mon 17 Mar 2003 02:38:36
 letter => "%A, %e %B", # Monday, 4 March
);

Note also how clear the explanatory comments are. Something like Mon 17 Mar 2003 02:38:36 is
much easier to read and understand than something like dow dom mon year time, because it’s easier to
see than to think. I think this also illustrates what I call the first maxim of documentation, which says
that an ounce of examples is worth a pound of specifications.

The Main Loop

Now I’ll tackle the main part of the program. The first red flag I saw was:

 69 if (exists $domains{$domain}){
 70 next;
 71 }
 72 else {
 ... the entire rest of the program ...
 98 }

This is The Condition that Ate Michigan. The else part of the if block has swallowed the entire
program whole.

figure 3.1: Michigan

The easy rewrite in this case is to turn the if test into a statement modifier:

 next if exists $domains{$domain};

 ... the rest of the program ...

If we do this, everything moves closer to the left-hand margin. When you read, your eye likes to move
down smoothly down the left-hand margin. Things are harder to see when they are farther to the right, so
you should try to keep normal control flow close to the left-hand margin. This minimizes eye
movement and improves readability; it’s why newspaper copy, which has a lot of small type, is set in
narrow columns.

Sidebar: The Condition that Ate Michigan
Here’s another example of The Condition that Ate Michigan

 Subject: Apply Regex In Place
 Message-ID: <1YVv7.64617$0x.22955187@typhoon.southeast.rr.com>

 sub each_file {
 if (-T $_) {
 print "processing $File::Find::name\n";
 if (open F, "< $_") {
 my $s = <F>;
 close F;
 if (open F, "> $_") {
 $s =~ s/COLUMN1/COLUMN1/ig;
 print F $s;
 close F;
 }
 else {
 print "Error opening file for write: $!\n";
 }
 }
 else {
 print "Error opening file for read: $!\n";
 }
 }
 }

Here the entire function has been gobbled up by the ravenous if -T condition. Readability suffers as a result. Quick! Does
the if -T have an else clause?

Instead, we can write:

 Subject: Apply Regex In Place
 Message-ID: <1YVv7.64617$0x.22955187@typhoon.southeast.rr.com>

 sub each_file {
 return unless -T $_;

 print "processing $File::Find::name\n";
 ...
 }

and it becomes immediately apparent that the function simply ignores non-text files.

Sidebar: The Great Pyramid

figure 3.2: pyramids

The very day after I first recognized this red flag, I met the following example in comp.lang.perl.misc:

 Subject: Quicker way pyramidsto loop through directories?
 Message-ID: <9q1f65$ht6@newton.cc.rl.ac.uk>

 if(opendir(DIR, "f:/list-logs"))
 {
 while($dir = readdir(DIR))

 {
 if(-d "f:/list-logs/$dir" and $dir ne "." and $dir ne "..")
 {
 if(opendir(SUB, "$listlogs/$dir"))
 {
 while($file = readdir(SUB))
 {
 if($file =~ /\.log.+/i)
 {
 $total += -s "$listlogs/$dir/$file";
 }
 }
 closedir(SUB);
 }
 }
 }
 closedir(DIR);
 }

Wowzers! That’s a lot of context you have to remember by the time you get to the pharaoh’s burial chaber in the center.
Perhaps this is better:

 opendir(DIR, "f:/list-logs" or die ...;
 while($dir = readdir(DIR))
 {
 next if $dir eq "." or $dir eq "..";
 next unless -d "f:/list-logs/$dir";

 opendir(SUB, "$listlogs/$dir") or next;

 while($file = readdir(SUB))
 {
 next unless $file =~ /\.log.+/i;
 $total += -s "$listlogs/$dir/$file";
 }
 closedir(SUB);
 }
 closedir(DIR);

(If you disagree, that’s OK.)

Here’s another variation on that innermost loop:

 for (grep /\.log.+/i, readdir(SUB))
 {
 $total += -s "$listlogs/$dir/$_";
 }

Which of the three variations do you like best? Which do you like least? Remember to try it both ways.

Skipping Duplicate Items

The program now has:

 # ignore this one if it has already been processed
 next if exists $domains{$domain};

 $domains{$domain} = $domain;

This is a fairly ordinary use of a hash to recognize duplicate items, but it confused me. What is the hash
value used for? I investigated, and found that it wasn’t used for anything. I would have been less
confused by:

 $domains{$domain} = 1;

One very frequently-seen idiom for this kind of task is:

 next if $seen{$domain}++;

Also, domain names are case-insensitive, so we probably want:

 next if $seen{lc $domain}++;

Loop Hoisting

Next, I got to wondering about this:

 77 # set up resolver object
 78 my $res = new Net::DNS::Resolver;
 79 $res->nameservers($NAMESERVER); # search 1 ns only

The main loop builds a new Net::DNS::Resolver object for each input line. Why do it repeatedly?

Code in a loop that doesn’t depend in any way on the data being looped over is called invariant.
Invariant code can often be hoisted out of the loop:

 # set up resolver object
 my $res = new Net::DNS::Resolver;
 $res->nameservers($NAMESERVER); # search 1 ns only

 43 print "Start: ".formatDate("long")."\n";
 ...

Here we’ve removed the initialization of the $res object from the loop, butting it up toward the top of
the program. This makes the loop easier to understand by making it smaller; it may also be fractionally
more efficient.

File-Scope my Variables

Since I’m in the vicinity, let’s look at lines 36--41:

 36 my %seen;
 37 my $domain;
 38 my $rr;
 39 my $query;
 40 my $records;
 41 my $null;

We’ve seen this before. Why are all these variables declared at file scope? To answer this question, I
searched the program to find out where the variables were used. It turned out that $rr, $records, and
$null were not used, so that’s three more lines of code gone with no gross cost at all.

$domain is private to the main loop, so that is where it should be declared. We can eliminate the
file-scope my declaration completely just by slapping a my on the first appearance of $domain inside the
loop. Line 64 becomes:

 64 [C[my]C] $domain = $inprecord[0];

$query is the same:

 82 [C[my]C] $query = $res->query($domain, "NS");

Lines 37--41 have gone away completely.

Diagnostics

We’ve seen diagnostics like these before:

 43 print "Start: ".formatDate("long")."\n";

 105 print "End: ".formatDate("long")."\n";

They are being sent to STDOUT, but it’s almost always preferable to send diagnostics to STDERR. That
way, if the program’s output is directed into a file, the diagnostics don’t vanish into the file; they stay on
the terminal where someone can see them. If the program’s output is directed into a pipe to another
program, the diagnostics don’t go into the pipe where they will confuse the other program or have to be
filtered out; they stay on the terminal where someone can see them. This is why STDERR was invented.
So I would prefer:

 [C[warn]C] "Start: ".formatDate("long")."\n";

 [C[warn]C] "End: ".formatDate("long")."\n";

Hardwired Source and Destination
 27 my $DOMLIST = "/export/home/bwilkins/dnsmu/scripts/testzones.2";
 28 my $OUTLIST = "/export/home/bwilkins/dnsmu/scripts/testzones.3";

 45 open(DOMFILE, "<$DOMLIST") || die "Can’t open the file $DOMLIST:$!\n";
 46 open(OUTFILE, ">$OUTLIST") || die "Can’t open the file $OUTLIST:$!\n";
 52 while (<DOMFILE>)

 97 print OUTFILE "$outrecord\n";

Since the program is hardwired to get its input from one particular file, and to write its output to one
particular file, no matter what, it can be run only by B. Wilkinson, who happens to own those two files.
Nobody else can use it. This is how we can infer that the author is B. Wilkinson.

However the source and destination need not be limitations of the program. Perl makes it easy to write
programs with flexible input and output conventions.

First, change these:

 52 while (<DOMFILE>)

 97 print OUTFILE "$outrecord\n";

to these:

 while (<>)

 print "$outrecord\n";

Now the program reads from standard input, or from the files named in @ARGV, and writes to standard
output. Wilkinson can get the original behavior by executing the command:

 checkzonesloaded ~/dnsmu/scripts/testzones.2 > ~/dnsmu/scripts/testzones.3

If the input or the output files move, the program will works, and other people can run the program in
their own files.

If Wilkinson doesn’t want to write that entire command line, he should consider something like this:

 @ARGV = ($DOMLIST) unless @ARGV;
 open STDOUT, ">$OUTLIST" if -t STDOUT;

This will default the input file list and output destination if they are unspecified. If Wilkinson is willing
to type the long command line, we can get rid of the variables $DOMLIST and $OUTLIST entirely, along
with a pile of open and close machinery.

Warnings

Many people will insist vociferously and dogmatically that you must always use Perl’s -w flag under all
circumstances. I will not so insist. It is a tool, and, like other tools, you should try it out and decided for
yourself when its use is appropriate. But it’s almost always helpful to run this command:

 perl -wc yourprogram.pl

This performs a basic syntax check and issues static (compile-time) warnings without actually running
the program. If there are any warnings, the next step is to try to understand what they mean, and whether
they indicate that anything is wrong with the program.

In this case, we get several warnings. The first one is:

 defined(@array) is deprecated at
 /usr/local/lib/perl5/site_perl/5.6.1/Net/DNS.pm line 137.
 (Maybe you should just omit the defined()?)

This is not our problem; it is an error in the Net::DNS module.

The next warnings are:

 main::formatDate() called too early to check prototype
 at checkzonesloaded.pl line 43.
 main::formatDate() called too early to check prototype
 at checkzonesloaded.pl line 49.
 main::formatDate() called too early to check prototype
 at checkzonesloaded.pl line 105.

"Prototype?" What prototype?

It turns out that Perl is complaining about the parentheses in:

 118 sub formatDate[C[()]C]
 119 {
 ...
 149 }

The Perl syntax for defining functions is:

 sub formatDate
 {
 }

The extra () is interpreted as a prototype, describing the format of the intended arguments. In this case,
the empty parentheses mean that there will be no arguments. Had this been enforced, the function would
have been broken, because we do want to call formatDate() with no arguments. Fortunately, the
prototype was inoperative in this case, because Perl had compiled the calls to formatDate before it saw
the prototype. By the time it found out that formatDate was supposed to be called with no arguments, it
was too late to enforce that; all it could do was warn us that it was too late.

Had the prototype been operative, say because the function was defined before the calls, instead of after,
we would have gotten a fatal error:

 Too many arguments for main::formatDate
 at checkzonesloaded line 42, near ""long")"
 Too many arguments for main::formatDate
 at checkzonesloaded line 45, near ""short")"
 Too many arguments for main::formatDate
 at checkzonesloaded line 77, near ""long")"
 Execution of checkzonesloaded aborted due to compilation errors.

Perl has too much punctuation, and it’s easy to slip up and put in some extra that isn’t needed, especially
if you are used to programming in C, which has a slightly different syntax. I missed this error too, until
-w pointed it out to me. -w is good for catching this sort of thing.

There’s one last warning we get from the perl -wc check:

 Name "main::DOMLIST" used only once: possible typo
 at checkzonesloaded line 103.

Perl warns any time you use a variable only once, because such usages are rarely correct. You usually
need to access a variable at least twice: once to store a value in it, and once to read the value back again.
Or, if the variable is a filehandle, as it is here, you need to mention it once to open it, and then at least
once more to read or write it. Here’s the line 103 that Perl is warnings us about:

 103 close DOMLIST;

Here’s where we opened that handle:

 45 open(DOM[C[FILE]C], "<$DOMLIST") || die "Can’t open the file $DOMLIST:$!\n";

Oops!

Anyway, if we go with my idea for more flexible input and output of the previous section, we can get rid
of the opens and closes entirely.

chop

 54 chop $_;

The chop function is almost entirely obsolete. It was originally intended to remove a trailing record
terminator sequence from an input line. It was invented on Unix systems, where the terminator sequence
was a single "\n" character, so chop simply removes the last character from its argument. But as Perl
spread to other systems, people realized that this wasn’t always the right behavior. On some systems, the
terminator sequence isn’t a single character; typically, it’s "\r\n".

Even under Unix, the behavior of chop isn’t exactly right. Sometimes a text file doesn’t end with a "\n"

character; then calling chop on the last record discards a legitimate data character and garbles the data.

In Perl 5, the chomp function was introduced to repair these defects. It always removes the appropriate
record terminator sequence, (as defined by $/), but only if there was one to remove. chop should almost
always be replaced with chomp:

 chomp $_

Variable Use Immediately Follows Assignment

Well, actually not. I thought that was what this was:

 62 my @inprecord = split(",", $_);
 63
 64 $domain = $inprecord[0];

And I was planning to replace this with:

 my ($domain) = split(",", $_);

but I was mistaken, because @inprecord is used later on:

 85 if ($query)
 86 {
 87 push (@inprecord, $query->header->aa);
 88 }
 89 else
 90 {
 91 push(@inprecord, "-");
 92 }
 93
 94 my $outrecord .= join (",",@inprecord);

Oh well.

Taking Two Steps Forward and One Step Back

But then I got to wondering about the split and join:

 62 my @inprecord = split(",", $_);

 94 my $outrecord .= join (",",@inprecord);

Why split the record apart if we know that we’re just going to have to put it back together again?

Often when you ask that question, the answer is "no reason at all", and you get an easy opportunity to
simplify the code; we’ll see some later on. But on this case the question has two reasonable answers.

First, we need to split up the record because $domain is its first field, and we need to do something with
the domain. And second, we need to do the join to attach a new field to the end of the record:

 87 push (@inprecord, $query->header->aa);

But let’s see what happens if we try to avoid the split-join anyway; maybe it will turn out to be
simpler than what we have. (Try it both ways.) We’ll deal with the second issue first.

Adding Another Field at the End

The code that deals with this goes like this:

 62 my @inprecord = split(",", $_);
 ...
 85 if ($query)
 86 {
 87 push (@inprecord, $query->header->aa);
 88 }
 89 else
 90 {
 91 push(@inprecord, "-");
 92 }
 93
 94 my $outrecord .= join (",",@inprecord);
 95
 96 # print results
 97 print OUTFILE "$outrecord\n";

All we’re doing is adding some extra data to the end of each record, so we could replace the code with
this:

 if ($query)
 {
 print $_, ",", $query->header->aa, "\n";
 }
 else
 {
 print $_, ",", "-", "\n";
 }

Or, in the interests of trying to avoid excess punctuation, perhaps this version:

 if ($query)
 {
 print "$_,", $query->header->aa, "\n";
 }
 else
 {
 print "$_,-\n";

 }

Which do you prefer?

Sidebar: Compression
Factoring out the common code from this pair of blocks gives us something like this:

 print $_, ",";
 if ($query)
 {
 print $query->header->aa;
 }
 else
 {
 print "-";
 }
 print "\n";

Or we might even replace the if--else with ?: and write:

 print $_, ",", $query ? $query->header->aa : "-", "\n";

Which variation do you think is best?

More Splitting

There were two reasons that we had to split the input records; we dealt with the second which was that
we needed to add new data to the end of each record. #1 was that the program needs to do something
with the domain field, which is the first field of the input record:

 64 $domain = $inprecord[0];

Here we can’t avoid the split (at least, not without replacing it with something worse, like a regex
match), but we can avoid splitting the entire record:

 my ($domain) = split(",", $_);

Perl optimizes this so that instead of splitting it up on every comma it only splits the record on the first
comma, which is all that is needed.

Now we can eliminate the @inprecord variable entirely, getting rid of three more lines of code.

Sidebar: Taking Two Steps Forward and One Step Back
Here’s a smaller example of taking two steps forward and one step back|R:

 54 chop $_;
 55
 56 # write comments lines direct to output file
 57 if (/^#/){
 58 print OUTFILE "$_\n";
 59 next;
 60 }

Here we remove the newline from $_ on line 54 and put it back at line 58. Would it be better to this:

 # write comments lines direct to output file
 if (/^#/){
 print;
 next;
 }

 chop $_;

I’m honestly not sure. What do you think?

A Note About split

I get nervous whenever I see this:

 split(",", $_)

The reason is that I’ve seen too many people ask why this doesn’t work:

 split("|", $_)

For example:

 Date: Mon, 9 Aug 1999 23:33:15 -0400
 Subject: Help - Split Function Blowing My Mind Away!!
 Message-Id: <a1Nr3.57892$jl.36696862@newscontent-01.sprint.ca>

 Please consider the following function:

 sub writeEntry
 {
 @record = split("|",$_[0]);
 foreach $field (@record)
 {
 print "$field
\n";
 }
 }

 During debugging I have printed the value of $_[0] and it’s as
 expected. The value is:

 Derek Battams|Mail Address Here|URL Here|Comment Here

 When I do the print in the foreach loop I get each character
 as an element of the array @record. Why isn’t the string
 being split with the pipe as the delimiter?

Or for example:

 Date: Wed, 06 Dec 2000 02:35:59 GMT
 Subject: Problem with split using |
 Message-Id: <slrn92r9a8.15c.tom.hoffmann@localhost.localdomain>

 When I split the following string on the "|" character, it
 splits into 35 array elements. When I change the "|" to a
 "," and split on the comma, it splits into the 7 fields I
 expect, but I can not figure out why splitting on "|" does
 not give the same result.

 The pertinent code is:

 $unidata = ’|0000 0000|CI78-00727|19780126||DV||’;
 @unidata = split ("|", $unidata);

Or for example:

 Date: Wed, 12 Jun 2002 11:19:32 -0400
 Subject: How to split with "|"?
 Message-Id: <3D076684.6060900@mail.med.upenn.edu?

 How to split with "|"? When I used "@list = split("|",
 $string)", @list turned out to be a single char list.

So what’s going on in cases like this one?

 Subject: Help - Split Function Blowing My Mind Away!!

 @record = split("|",$_[0]);

The quote marks have confused the author. The quote marks make it look as though the first argument to
split is a string, but it isn’t; it’s a regex. Even if you write it with quote marks, it’s still a regex. And |

is special in regexes. The split call above is treated as if it had been:

 @record = split(/|/, $_[0]);

and now the problem is apparent; the pattern being split on is empty-string-or-empty-string. Another
common problem of this type occurs with split(".", $var), where the . is a regex metacharacter that
matches any single character.

Returning to checkzonesloaded, we have:

 split(",", $_)

Here Perl pretends that we wrote split(/,/, $_) anyway. In this case it didn’t matter, because comma
is not special inside of regexes. But it seems simplest to just use /.../ with split to avoid confusion;
the first argument is a regex, so we should write it like a regex. So I’ll replace this line with:

 split(/,/, $_)

There’s one exception to this description of split: split " ", ... is a weird special case. Instead of
behaving like split / /, ..., it behaves like split /\s+/, ...---except that it also discards leading
null fields. This feature was put in to emulate the corresponding feature of awk, but the syntax Larry
chose isn’t one of his better inspirations.

Summary

The original version of checkzonesloaded.pl was 61 lines long; the finished version is only 30. The
modified version does the same things, but it’s missing a few potential bugs, it might be a tiny bit faster,
and I think it’s easier to read.

Chapter 2 | TOP

