
Next Lightweight Databases 1

"How do I delete a line from a file?"

(Strategies for Lightweight Databases)

Mark Jason Dominus

Plover Systems Co.

 mjd-tpc-lwdb+@plover.com

v1.2 (September, 2003)

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 2

FAQ
perlfaq5 says:

How do I change one line in a file/delete a line in a file/insert a line in
the middle of a file/append to the beginning of a file?

This class will answer these questions

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 3

What We’ll Do
Plain text files

The old ’copy the file’ method

seek and indexing

Tie::File

DBM files

DB_File

Various applications and case studies

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 4

Text Files
Text files are used all the time for lightweight databases

For example, Unix’s /etc/passwd file

Apache’s analogous password files

Databases and spreadsheets dumped into ’CSV’ (comma-separated value)
format

Server log files

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 5

Rotating Log File
Here’s a typical problem:

Append a line to the end of a log file

But the log file should contain only the most recent 100 lines

If it’s longer than that, the old lines should be removed from the beginning

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 6

Deleting a User
Another typical problem:

User billg has been fired

We want to remove his account

We should delete his entry from the password file

 mjd:A2lJWJVp5BqDA
 isi:A1gDcdPxmSOMY
 tchrist:A3Jye3/wLzQNs
 lenhard:A4z2KThzpHppE
 gnat:A51FSA8JrmV6M
 oznoid:A61i7deQ1D.82
 rspier:B2lk7jM.0tjgk
 billg:B35TsiJGzy/3w
 layer:B6/E4Qdz9Dsss
 maeda:KikFYFOSnGTwM

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 7

Copy the File
The simplest and most often-cited solution is to copy the file

Make the changes as you write the copy

Then replace the original with the copy

For example, deleting billg:

 sub delete_user {
 my ($file, $target_user) = @_;
 open my $rfh, "<", $file or die ...;
 open my $wfh, ">", "$file.tmp" or die ...;
 while (<$rfh>) {
 my ($user) = split /:/;
 print $wfh unless $user eq $target_user;
 }
 close $rfh; close $wfh or die ...;
 rename "$file.tmp", $file or die ...;
 }

Or appending to a log file:

 sub append_log {
 my ($file, @newrecs) = @_;
 open my $rfh, "<", $file or die ...;
 open my $wfh, ">", "$file.tmp" or die ...;
 my @recs = (<$rfh>, @newrecs);
 splice @recs, 0, @recs-$MAXRECS if @recs > $MAXRECS;
 print $wfh @recs;
 close $rfh; close $wfh or die ...;
 rename "$file.tmp", $file or die ...;
 }

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 8

Copy the File
Perl’s -i option can make this easy:

 perl -i -F: -lane ’print unless $F[0] eq "billg"’ .users

-i opens the original file for reading

Then removes it

The reopens the same name for writing

Redirects standard output into the new file

Data written to STDOUT is captured in the file

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 9

-i.bak

Alternatively, you can have Perl leave behind a backup file

 perl -i.bak -F: -lane ’print unless $F[0] eq "billg"’ .users

This is the same as -i

Except Perl does not remove the original file

Instead, it renames it to file.bak

If Perl crashes partway through, the old data is still available in file.bak

(Or if you decide you don’t like the change.)

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 10

Using -i inside a program
 perl -i.bak -F: -lane ’print unless $F[0] eq "billg"’ .users

That’s all very well as a shell command

What if you want to remove billg as part of a larger Perl program?

Of course, one option is obviously:

 system(qq{perl -i.bak -F: -lane
 ’print unless \$F[0] eq "billg"’ .users});

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 11

Using -i inside a program
Using the -i facilities from inside a program requires a little trick

The files that -i operates on are the ones named in @ARGV

The special $^I variable holds the backup file suffix

(Empty string if no backup)

To engage -i, set up @ARGV and $^I and run a while <> loop:

 sub delete_user {
 my ($file, $target_user) = @_;
 local $^I = ".bak";
 local @ARGV = ($file);
 while (<>) {
 my ($user) = split /:/;
 print unless $user eq $target_user;
 }
 }

Now the opening and renaming are all implicit

Use local so that $^I and @ARGV recover their old values when the function is done

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 12

Problems with -i
For casual tasks, -i is very handy

But if Perl crashes or the system goes down in the middle, the data is lost

Even if Perl doesn’t crash, the file is in an inconsistent state while it’s being
rewritten

Hair-raising example:

 perl -i.bak -F: -lane ’print unless $F[0] eq "billg"’ /etc/passwd

Suppose perl gets swapped out just after it renames /etc/passwd

Now the password file is empty

Anyone can log in with no password

We need a more reliable strategy

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 13

Copy With Changes
This is something like what -i does:

 sub delete_user {
 my ($file, $target_user) = @_;
 open my $rfh, "<", $file or die ...;
 rename $file, "$file.bak" or die ...;
 open my $wfh, ">", $file or die ...;
 while (<$rfh>) {
 my ($user) = split /:/;
 print $wfh unless $user eq $target_user;
 }
 close $rfh; close $wfh;
 }

The problem is that the rename is too soon

We shouldn’t replace the old contents with new so early

We should wait until the complete new file is in place

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 14

Copy With Changes
This version (which we saw earlier) is safer:

 sub delete_user {
 my ($file, $target_user) = @_;
 open my $rfh, "<", $file or die ...;
 open my $wfh, ">", "$file.tmp" or die ...;
 while (<$rfh>) {
 my ($user) = split /:/;
 print $wfh unless $user eq $target_user;
 }
 close $rfh or die ...;
 close $wfh or die ...;
 rename "$file.tmp", $file or die ...;
 }

rename is guaranteed to be atomic:

At every instant, exactly one version of the file exists

If the function fails, or Perl crashes, the old file is untouched

At the moment the rename succeeds, the entire new file is in place

(Warning: file.tmp and file must be on the same filesystem)

Why doesn’t -i do it this way?

No good reason; coming in 5.10.

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 15

Essential Problem
Unix filesystems treat files like a sequence of bytes

The basic operations are:

read a certain amount of data at the current position

write a certain amount of data at the current position

seek - adjust the current position

truncate the file to a certain length

You can overwrite data in place:

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 16

Essential Problem

But there is no option to insert or remove data

To insert, you must copy the following data forward

To remove, you must copy the following data backward

(Other OSes may support more powerful operations)

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 17

Essential Problem
Moreover, byte-oriented operations are inconvenient for record-oriented programs

Counting the number of bytes is easy:

 my $n_bytes = -s $file;

Counting the number of lines is hard:

 open F, "<", $file;
 while (<F>) {
 $n_lines++;
 }

Reading or writing at a certain byte position is easy:

 seek F, $B_POSITION, SEEK_SET;

Reading or writing at a certain line position is hard:

 seek F, 0, SEEK_SET; $REC = 1;
 <F> until $REC++ >= $L_POSITION;

The copy-the-file technique is simple, but it always pays the maximum possible cost

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 18

Fundamental Operations

Read

 read(FH, my($buffer), $length);

The standard I/O library enables reading by records

Data is read a block (4k or 8k) at a time into an internal buffer

read and <...> copy data out of the buffer

 $record = <FH>;

Write

 print FH $buffer;

Note the opposite of read is not write; it’s print

Truncate

 truncate FH, $length;
 truncate $filename, $length;

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 19

Seek
seek adjusts the current position of a filehandle

 use Fcntl ’:seek’; # For SEEK_SET etc.

Absolute position:

 seek FH, $position, SEEK_SET;

Relative position:

 seek FH, $position, SEEK_CUR;

Relative to the end of the file:

 seek FH, $position, SEEK_END;

tell returns the current absolute position:

 my $position = tell FH;

 # read, write, and seek FH here ...

 seek FH, $position, SEEK_SET;

This is guaranteed to put the handle back where it was at the time of the tell

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 20

Costs
We’ll see many different methods for searching and maintaining flat files

They all have tradeoffs

Some support quick searches

Some support quick modifications

There’s always a tradeoff

 Copy the file

 Add record S
 Delete record S
 Modify record S

Here S is the size of the file

This means that it takes about twice as long to deal with a file that is twice as big.

 Successful search S/2
 Unsuccessful search S

On average, we only have to search half the file if the record is there

But the whole file if not

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 21

Adding Records
 Add record S

With a plain flat text file, there’s a shortcut for adding records

Adding a record at the end of the file is very cheap

 Append to beginning S
 Append to middle S
 Append to end 1

The code looks like this:

 sub add_user {
 my ($file, $new_user_data) = @_;
 local *F;
 open F, ">>", $file or return;
 print F $new_user_data, "\n";
 }

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 22

Sorted Order
If we keep the file in sorted order, searching is faster

We can use a binary search

This is the method we use for searching the telephone book

Idea:

Look at a record near the middle of the file

If the record is too early, look only at the last half of the file

If the record is too late, look only at the first half of the file

Repeat on successively smaller segments of the file

The standard Search::Dict module does this

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 23

Binary Search
Binary search is notoriously difficult to code

There are a lot of funny edge cases

If you write it yourself, test very carefully

Or use Search::Dict

Or the (carefully tested) code in your handouts

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 24

Binary Search
This function gets a filehandle open to a sorted file

It finds the first line in the file that is ge $key

Returns that line and leaves $fh positioned at that line

 sub search {
 my ($fh, $key) = @_;

 my ($lo, $hi) = (0, -s $fh);

 while (1) {
 my $mid = int(($lo + $hi)/2);

 if ($mid) {
 seek $fh, $mid-1, SEEK_SET;
 my $junk = <$fh>;
 } else {
 seek $fh, 0, SEEK_SET;
 }

 my $start = tell $fh;
 my $rec = <$fh>;
 return unless defined $rec;
 chomp $rec;

 if ($hi == $lo) {
 seek $fh, $start, SEEK_SET;
 return $rec
 }

 if ($rec lt $key) { $lo = $mid+1 }
 else { $hi = $mid }
 }
 }

This is search1.pl in your handout

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 25

Binary Search
What’s with this?

 if ($mid) {
 seek $fh, $mid-1, SEEK_SET;
 my $junk = <$fh>;
 } else ...

 my $start = tell $fh;
 my $rec = <$fh>;

Well, we want the record that starts at or after $mid

But $mid might point into the middle of a record

We back up one space in case it doesn’t point into the middle:

Note: This trick only works when length($/) = 1

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 26

Binary Search
search3.pl works for any value of $/

It’s similar to the innards of Search::Dict

It uses binary search only to locate the block that contains the target

Then it does linear search on the block

It’s about 75% slower than search1.pl

Also, it might fail if any of the records are longer than a disk block

The code is at the back of your book

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 27

Sorted Order
Here’s a benchmark result comparing linear search against binary:

 user sys total
 Linear: 9.98 0.23 10.21
 Binary: 0.01 0.04 0.05

This is on ten randomly selected keys

The target file contained 234,693 lines

Here’s 1000 searches with search1.pl and search3.pl:

 NULL: 0.00 0.00 0.00
 Search1: 3.00 0.44 3.44
 Search3: 5.58 0.39 5.97

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 28

Sorted Order
search2.pl in your handout is like search1.pl, but a little more general

It takes a search function that compares records

The function should return a negative value if the current record is too early

search2.pl finds the first record in the file that is not ’too early’

For example, if your file is the password file, sorted on field 2:

 search(*PASSWD,
 sub { my ($uid) = (split /:/)[1];
 $uid <=> 119 });

This locates the first record whose UID is at least 119

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 29

Sorted Order
The big drawback of sorted files is that they’re hard to update

You can’t just append a new record at the end

Comparison:

 Unsorted Sorted

 Lookup Slow Fast
 Add Fast Slow
 Delete Slow Slow

An alternative is a hybrid approach

Have two files, one sorted, one unsorted

For lookups, search the sorted file first, then the unsorted file

To add records, append to the unsorted file

Periodically merge the unsorted file into the sorted one

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 30

Modifying Records
Modifying records in-place is tricky

Because there might not be enough room for the new version

Or the new version might not be big enough to fill all the space

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 31

Overwriting Records
Suppose we are replacing a record with another of exactly the same length

Then we need not rewrite the entire file

For example:

 sub uppercase_username {
 my ($fh, $username) = @_;
 seek $fh, 0, SEEK_SET;
 while (<$fh>) {
 my ($u, $rest) = split /:/, $_, 2;
 next unless $u eq $username;
 seek $fh, -length($_), SEEK_CUR;
 print $fh uc($u);
 return;
 }
 }

We search the file as usual

When we find the record we want, we back up and overwrite it in place

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 32

Bytes vs. Positions
This looks innocuous, but it opens a 55-gallon drum of
worms:

 seek $fh, -length($_), SEEK_CUR;

Here we wanted to back up to the beginning of the current
record

This won’t always work

Seek positions don’t always correspond to character offsets

Consider a DOS file:

 I like pie\r\n
 Especially apple.\r\n

After reading the first record, tell is likely to return 12

But $_ will contain "I like pie\n" (11 characters)

The \r\n is translated to just \n on input

The problem gets much worse with variable-length character encodings like UTF-8

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 33

Bytes vs. Positions
I could probably talk all day about the various problems that come up

So instead, we’ll have one slide

This always works, no matter what:

 my $position = tell FH;

 # read and write FH here ...

 seek FH, $position, SEEK_SET;

This always works, no matter what:

 seek FH, 0, SEEK_SET;

Bytes and characters are the same on Unix systems when files have 8-bit encodings

(Like ordinary text files, or files with ISO-8859 characters)

Ditto for DOS/Windows systems if the filehandle is in binary mode:

 binmode(FH);

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 34

Gappy Files
If we need to modify variable-length records, we can do that

Recall that the problems are:

1. The new version of the record might not be big enough to fill all the space

2. Or there might not be enough room for the new version in the old space

(1) is easy to deal with: Just leave behind some padding characters

(2) can’t be dealt with; the record must move

Replace it with padding and put the new record at the end

You also have to fix your search function to ignore the padding

Example code is in modify-in-place.pl; example data in MIP

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 35

Gappy Files
Searching first:

 sub find {
 my ($fh, $key) = @_;
 seek $fh, 0, SEEK_SET;
 my $pos = 0;
 while (<$fh>) {
 chomp;
 next if /^\0*$/;
 if (index($_, $key) == 0) {
 seek $fh, $pos, SEEK_SET;
 return $_;
 }
 $pos = tell $fh;
 }
 return;
 }

This locates the first record that starts with $key and returns it

Also leaves $fh positioned at the start of that record

The key here is to ignore any line that is all NUL characters

These represent ’gaps’ from which data has been removed

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 36

Gappy Files
 sub modify {
 my ($fh, $rec) = @_;
 my $pos = tell $fh;
 chomp(my $oldrec = <$fh>);
 seek $fh, $pos, SEEK_SET;

 if (length $oldrec == length $rec) {
 # easy case
 print $fh $rec;

 } elsif (length $rec < length $oldrec) {
 my $shortfall = length($oldrec) - length($rec);
 my $fill = "\0" x ($shortfall-1);
 print $fh $rec, "\n", $fill;

 ... continued ...

In this case, the new record will fit in the old space

Say we’re changing tchrist:A3Jye3/wLzQNs\n to tom:A3Jye3/wLzQNs\n

We actually change it to tom:A3Jye3/wLzQNs\n\0\0\0\n

This is the same length

find will ignore the \0\0\0\n ’gap’

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 37

Gappy Files
 sub modify {

 ... continued ...

 } else { # New record is too big
 my $fill = "\0" x length($oldrec);
 print $fh $fill;
 seek $fh, 0, SEEK_END; # New record goes at the end
 print $fh $rec, "\n";
 }
 }

Here the new record won’t fit

We remove the old record entirely, and put the new one at the end

Say we’re changing gnat:A51FSA8JrmV6M\n to torkington:A51FSA8JrmV6M\n

We replace gnat:A51FSA8JrmV6M\n with
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\n

We put torkington:A51FSA8JrmV6M\n at the end of the file

find will ignore the \0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\n ’gap’

A sufficiently clever implementation might put something else into the gap later

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 38

Gappy Files
A variation: fill the gaps with newlines instead of NULs:

 ...
 if (length $oldrec == length $rec) {
 # easy case
 print $fh $rec;
 } elsif (length $rec < length $oldrec) {
 my $shortfall = length($oldrec) - length($rec);
 my $fill = "\n" x $shortfall;
 print $fh $rec, "\n", $fill;
 } else { # New record is too big
 my $fill = "\n" x length($oldrec);
 print $fh $fill;
 seek $fh, 0, SEEK_END; # New record goes at the end
 print $fh $rec, "\n";
 }
 ...

Then have find ignore blank lines

See mip2.pl in the handout

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 39

Fixed-Length Records
If all the records are the same length, it becomes easy to modify them

The ’gappy files’ code can dispense with the two hard cases

Suppose the file has the following format:

8-character username

5-character user ID

13-character encrypted password

20-character surname

18-character given name

Each record is exactly 64 bytes

 billg 666 xyPXkPQTjCjnUGates William
 mjd 119 A12FMTJGN5wpYDominus Mark Jason
 longuser123453OUbq7V0pV9doLongusername-EarwiggFeatherstonehaughs
 larry 1 ..qQYY3gYY0yAWall Larry
 ...

Note that fields may now contain spaces or any other data

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 40

Fixed-Length Records
 billg 666 xyPXkPQTjCjnUGates William
 mjd 119 A12FMTJGN5wpYDominus Mark Jason
 longuser123453OUbq7V0pV9doLongusername-EarwiggFeatherstonehaughs
 larry 1 ..qQYY3gYY0yAWall Larry
 ...

Code to search for a user now looks like this:

 sub find_user {
 my ($fh, $user) = @_;
 seek $fh, 0, SEEK_SET;
 while (read($fh, my($rec), 64) == 64) {
 my (@field) = unpack "A8 A5 A13 A20 A18", $rec;
 next unless $user eq $field[0];
 return @field;
 }
 return;
 }

unpack gets a format string that describes the data format

A8 is a space-padded alphabetic field of length 8

Trailing spaces are trimmed off

a8 is similar, but NUL-padded ("\0")

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 41

Fixed-Length Records
 while (read($fh, my($rec), 64) == 64) {
 ...
 }

Alternative: Starting in 5.6.0, you may say

 sub find_user {
 my ($fh, $user) = @_;
 seek $fh, 0, SEEK_SET;
 local $/ = \64;
 while ($rec = <$fh>) {
 my (@field) = unpack "A8 A5 A13 A20 A18", $rec;
 next unless $user eq $field[0];
 return @field;
 }
 return;
 }

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 42

Fixed-Length Records
Searching takes just as long as with variable-length records

The win is when we want to modify a record

 sub modify_user_data {
 my ($fh, $user, @newdata) = @_;
 unless (find_user($fh, $user)) {
 seek $fh, 0, SEEK_END; # Move to end of file
 }
 print $fh pack "A8 A5 A13 A20 A18", $user, @newdata;
 }

Before, modifying was difficult in general

The only easy way was to copy the entire file

Now modifying in-place is cheap

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 43

Numeric Indices
In some cases, we can speed up searching

Suppose we want to look up usernames by UID

Trick: Record number n holds information for user #n

 root 0 PLM/VF.estSxwSuper user
 larry 1 ..qQYY3gYY0yAWall Larry
 GARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEG
 GARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEG
 ...
 GARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEG
 GARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEG
 mjd 119 A12FMTJGN5wpYDominus Mark
 GARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEG
 ...
 GARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEG
 billg 666 xyPXkPQTjCjnUGates William
 ...

Locating a user is now very fast:

 sub find_user_by_uid {
 my ($fh, $uid) = @_;
 seek $fh, $uid * 64, SEEK_SET;
 if (read($fh, my($rec), 64) == 64) {
 my (@field) = unpack "A8 A5 A13 A20 A18", $rec;
 return @field;
 }
 return;
 }

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 44

lastlog

Unix lastlog records are stored in this way

 sub get_lastlog_info {
 my $user = shift;
 $user = getpwnam($user) if $user =~ /\D/;
 return unless defined $user;
 open L, "<", "/var/log/lastlog" or return;
 seek L, 292 * $user, SEEK_SET;
 return unless read(L, my($buf), 292) == 292;
 my ($time, $tty, $host) = unpack "i a32 a256", $buf;
 return ($time, $tty, $host);
 }

To use:

 if (my ($time, $tty, $host) = get_lastlog_info(shift)) {
 print "$user on $tty from $host\n\tat ",
 scalar(localtime $time), "\n";
 } else {
 print "$user never logged in\n";
 }

 % perl lastlog.pl hkang
 hkang on pts/18 from evrtwa1-ar10-4-61-239-206.evrtwa1.dsl-verizon.net
 at Sat Apr 19 15:45:56 2003

 % perl lastlog.pl www
 www never logged in

Complete code in lastlog.pl

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 45

Indexing
We can combine the speed of fixed-length records with the flexibility of
variable-length records

Idea: Make an index that records the position at which each record begins

The index itself is fixed-length

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 46

Indexing

To look up a user by UID:

 sub find_user_by_uid {
 my ($fh, $index_fh, $uid) = @_;
 seek $index_fh, $uid * 10, SEEK_SET;
 if (read($index_fh, my($rec), 10) == 10) {
 my ($offset) = unpack "A10", $rec;
 seek $fh, $offset, SEEK_SET;
 my $record = <$fh>;
 return defined $record ? split /:/, $record : ();
 }
 return;
 }

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 47

Indexing
That’s great, but where did the index file come from?

Index files are easy to build:

 sub build_index_for_users {
 my ($fh, $index_fh) = @_;
 seek $fh, 0, SEEK_SET;
 seek $index_fh, 0, SEEK_SET;
 truncate $index_fh, 0; # Discard old index
 my $pos = tell $fh;
 while (<$fh>) {
 my $uid = (split /:/)[1];
 seek $index_fh, $uid * 10, SEEK_SET;
 print $index_fh, pack "A10", $pos;
 $pos = tell $fh;
 }
 }

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 48

Void Fields
There’s a potential problem with the previous slide’s code

Suppose there is no user #2

find_user_by_uid will go to the right place in the index

It will read 10 nonsense bytes

Then it will read from a nonsense position in the data file

Solution: Fill nonsense fields with a special ’no such user’ value:

 sub build_index_for_users {
 my ($fh, $index_fh) = @_;
 seek $fh, 0, SEEK_SET;
 my $pos = tell $fh;
 my @position;
 while (<$fh>) {
 my $uid = (split /:/)[1];
 $position[$uid] = $pos;
 $pos = tell $fh;
 }

(Continued...)

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 49

Void Fields
(Continued...)

 seek $index_fh, 0, SEEK_SET;
 truncate $index_fh, 0; # Discard old index
 for (@position) {
 if (defined) {
 print $index_fh pack("A10", $_);
 } else {
 print $index_fh "NoSuchUser";
 }
 }
 }

find_user_by_uid then gets:

 return if my $offset eq ’NoSuchUser’;

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 50

Generic Text Indices
Sometimes the index number is just the record number:

 sub build_index_for_text {
 my ($fh, $index_fh) = @_;
 seek $fh, 0, SEEK_SET;
 seek $index_fh, 0, SEEK_SET;
 truncate $index_fh, 0; # Discard old index
 my $pos = tell $fh;
 while (<$fh>) {
 print $index_fh, pack "A10", $pos;
 $pos = tell $fh;
 }
 }

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 51

Packed Offsets
Instead of making index numbers 10-byte strings, use 4-byte machine integers:

 print $index_fh, pack "N", $pos;

Instead of "0 ", we use "\x00\x00\x00\x00"

Instead of "1 ", we use "\x00\x00\x00\x01"

Instead of "10 ", we use "\x00\x00\x00\x0a"

Instead of "1000000000", we use "\x3b\x9a\xca\x00"

Benefit: Smaller index

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 52

Tie::File

Perl 5.6.1 introduced a new module
called Tie::File

It makes a file look like an array

Each line in the file becomes an array
element

Reading or modifying the array reads or
modifies the file

I wrote it because I didn’t like the
answer to the FAQ question:

How do I change one line
in a file?

The answer wasn’t as helpful as I would
have liked:

 Those are operations of a text editor.
 Perl is not a text editor.

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 53

Tie::File Examples

How do I change one line in a file?

 tie @LINE, ’Tie::File’, ’my_file.txt’ or die ...;
 for (@LINE) {
 if (/not a text editor/) {
 s/not/now/;
 last;
 }
 }

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 54

Tie::File Examples

How do I delete a line in a file?

 for $n (reverse 0 .. $#LINE) {
 if (is_snide_answer_to_FAQ($LINE[$n])) {
 splice @LINE, $n, 1;
 }
 }

or:

 my $spliced = 0;
 for $n (0 .. $#LINE) {
 if (is_snide_answer_to_FAQ($LINE[$n - $spliced])) {
 splice @LINE, $n - $spliced, 1;
 $spliced++;
 }
 }

or:

 @snide = grep is_snide_answer_to_FAQ($LINE[$_])), 0..$#LINE;
 for (reverse @snide) { splice @LINE, $_, 1 }

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 55

Tie::File Examples

How do I insert a line in the middle of a file?

 for my $n (0 .. $#LINE) {
 if ($LINE[$n] =~ /<!--insert here-->/) {
 splice @LINE, $n+1, 0, $new_html_text;
 last;
 }
 }
 untie @LINE;

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 56

Tie::File Examples

How do I append to the beginning of a file?

 tie @LOG, ’Tie::File’, ’DrainC.log’ or die ...;
 unshift @LOG, $new_record1, $new_record2, @more_new_records;

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 57

Tie::File Examples

What Else?

 tie @FILE, ’Tie::File’, $file or die ...;

 push @FILE, $new_last_record;
 my $old_last_record = pop @FILE;
 my $old_first_record = shift @FILE;

 # Truncate or extend the file
 $#FILE = 100;

 # How long is the file?
 $n_lines = @FILE;

 # Overwrite the file
 @FILE = qw(I like pie);

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 58

delete_user Revisited
Here $file refers to a tied array instead of a filehandle:

 sub delete_user {
 my ($file, $target_user) = @_;
 for my $n (0 .. $#$file) {
 my ($user) = split /:/, $file->[$n];
 next unless $user eq $target_user;
 splice @$file, $n, 1;
 last;
 }
 }

Or we might even use this:

 sub delete_user {
 my ($file, $target_user) = @_;
 @$file = grep !/^$target_user:/, @$file;
 }

Wasn’t that easy?

Downside: The short version reads the entire file into memory

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 59

uppercase_username Revisited
This is even easier:

 sub uppercase_username {
 my ($file, $username) = @_;
 for (@$file) {
 last if s/^$username:/\U$username:/;
 }
 }

It’s also efficient

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 60

Rotating Log File

Tie::File solution:

 tie @LOG, ’Tie::File’, ’/etc/logfile’;

 sub log {
 push @LOG, @_;
 my $overflow = @LOG - 100;
 splice @LOG, 0, $overflow if $overflow > 0;
 }

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 61

Most Important Thing to Know About Tie::File
It’s for convenience, not performance

I worked hard to make it reasonably fast

But there’s only so much that can be done

 $FILE[0] =~ s/^x//;

This is always going to have to read and rewrite the entire file

Tie::File must perform reasonably well for many different types of applications

This means it’s slower than code custom-written for a single application

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 62

General code is slower than special code
For example:

 sub uppercase_username {
 my ($file, $username) = @_;
 for (@$file) {
 last if s/^$username:/\U$username:/;
 }
 }

This builds and maintains an offset table in case you visit any of the early records
again

If you don’t, the time spent is wasted

The first version of uppercase_username didn’t have to do that

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 63

Indexing with Tie::File
You can use an in-memory hash as an index into a Tie::File file

Here, %index maps usernames to record numbers:

 my %index;
 my $NEXT_UNREAD = 0;
 sub find_user {
 my ($file, $user) = @_;
 my $rec;

 until (exists $index{$user}) {
 $rec = $file->[$NEXT_UNREAD];
 return unless defined $rec;
 my ($u) = unpack "A8", $rec;
 $index{$u} = $NEXT_UNREAD;
 $NEXT_UNREAD++;
 }
 return unpack "A8 A5 A13 A20 A18", $file->[$index{$user}];
 }

Each time this is called, it checks the index for the user you asked for

If the user is there, it uses Tie::File to retrieve the data quickly

If not, it scans the file until it finds what you wanted

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 64

Caching
Tie::File also maintains an internal read cache

If you try to read the same record twice, it comes from the read cache

 sub _fetch {
 my ($self, $n) = @_;

 # check the record cache
 { my $cached = $self->{cache}->lookup($n);
 return $cached if defined $cached;
 }
 ...
 $self->{cache}->insert($n, $rec)
 if defined $rec && not $self->{flushing};
 $rec;
 }

This is supposed to cut down on I/O

You can limit the amount of memory used for the cache:

 tie @FILE, ’Tie::File’, $myfile, memory => 200000000;

Default: 2 MiB

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 65

Caching
Donald E. Knuth, a famous wizard, is fond of saying:

Premature optimization is the root of all evil.

The cache is a good example of this

Many common uses of Tie::File have a very low (or zero) cache hit rate

 for (@FILE) { s/.../.../ }

 unshift @FILE, items...;

As a result, the cache just slows things down

The next release of Tie::File will leave the cache disabled by default

It will enable the cache only if it believes this will help performance

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 66

Tie::File Modification
 $FILE[$n] =~ s/this/that/;

Tie::File knows how long each record is

If you replace a record with one of the same length, it overwrites in place

If the lengths differ, it must rewrite the tail of the file

It uses a block copy algorithm for this

Truncating the file is easy:

 $#FILE = 12;

This locates the end of record 12 (if necessary) and truncates the file accordingly

The general problem is very complicated and interesting

New improvements are always coming

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 67

Immediate vs. Deferred Writing
By default, changes to the array are propagated to the file immediately

This is called immediate writing

In some cases, this will be intolerably slow:

 for (@FILE) {
 s/^/>> /;
 }

This modifies record 0, rewriting 0 .. 1000

Then it modifies record 1, rewriting 1 .. 1000

Then it modifies record 2, rewriting 2 .. 1000

This is intolerably slow

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 68

Deferred Writing
If performance is more important than immediate writing, you may disable it:

 my $f_obj = tied(@FILE);

 $f_obj->defer;

 for (@FILE) {
 s/^/>> /;
 }

 $f_obj->flush;

All writing is done in memory until you call ->flush

(Or until the memory limit you specified is exceeded.)

Then all the writing is done in one batch

 tie @FILE, ’Tie::File’, $myfile, dw_size => 500000;

Default: Whatever the memory limit is

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 69

Autodeferring
 for (@FILE) {
 s/^/>> /;
 }

Loops like this are common

Tie::File detects these and enables deferred writing automatically

Then disables it again when you’re done

Unless you don’t want that:

 tie @FILE, ’Tie::File’, $myfile, autodefer => 0;

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 70

Miscellaneous Features
Read-only mode:

 use Fcntl ’O_RDONLY’;
 tie @FILE, ’Tie::File’, $myfile, mode => O_RDONLY;

Change the record separator string:

 tie @FILE, ’Tie::File’, $myfile, recsep => ";;";

Tie an open filehandle:

 tie @FILE, ’Tie::File’, *STDIN, mode => O_RDONLY;

Lock the file:

 use Fcntl ’:flock’;
 (tied @FILE)->flock(LOCK_EX);

(Locking is another advantage over DB_File)

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 71

DBM

Perl’s tie feature is a generalization of DBM files

(DBM is short for Data Base Manager, I think)

Basic idea: A Perl data structure is backed by a disk file

Reading the data structures reads the file

Modifying the data structures writes the file

This first appeared in perl 3

 dbmopen %hash, $filename, $permissions;

 dbmclose %hash;

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 72

DBM

 dbmopen %hash, $filename, $permissions;

There are several different libraries than can handle this association

Which one did dbmopen use?

Whichever one was compiled into Perl

If you want to copy data from an NDBM file into an ODBM file, too bad

This was one of the major motivations for the Perl 5 module system

New syntax:

 tie %hash, ’Package’, ARGS...;

The Package is a module responsible for implementing the association

dbmopen %hash, $file is now emulated as

 tie %hash, ’AnyDBM_File’;

AnyDBM_File tries several popular modules until it finds one that works

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 73

Common DBM Implementations
There are five widely-used DBM libraries

ODBM_File uses the original DBM library, called libdbm (1979)

NDBM_File uses an improved version called libndbm (1985)

GDBM_File uses the GNU project library, libgdbm (1990?)

SDBM_File uses a new version called libsdbm (1991)

DB_File uses the Berkeley DB library libdb (1993)

When you build Perl, it looks for each of these

It constructs and installs the tie modules for the ones you have

Exception: Perl comes with libsdbm, so you always have SDBM_File

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 74

What DBM Does
DBM libraries store data in a hashed database

It’s like a Perl hash, but on the disk

Advantage over plain text files:

Lookup is very fast

(Insertion is much less fast because data might have to be moved around)

Disadvantage:

The file is full of binary gibberish

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 75

What DBM Does
DBM libraries provide functions for storing, fetching, and generating lists of keys

The tie modules provide a glue layer between these libraries and Perl

 MODULE = SDBM_File PACKAGE = SDBM_File PREFIX = sdbm_
 #define sdbm_FETCH(db,key) sdbm_fetch(db->dbp,key)

These libraries are an attempt to keep a hash on the disk

Just as Tie::File is an attempt to keep an array on the disk

As with Tie::File, there are a lot of interesting tradeoffs to be made

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 76

Small DBMs: ODBM, NDBM, and SDBM
These all have the same major drawback:

The amount of data is limited

Typically, key size + value size must be less than about 1KB for each key

 use Fcntl ’O_RDWR’, ’O_CREAT’;
 use SDBM_File;

 tie %h, "SDBM_File", "/tmp/sdbm", O_RDWR|O_CREAT, 0666
 or die $!;
 $h{ouch} = "-" x 1024;
 print "ok\n";

Nope:

 sdbm store returned -1, errno 22, key "ouch" at sdbm_fail line 6.

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 77

Small DBMs: ODBM, NDBM, and SDBM
Another problem is that these databases use sparse storage

The hash isn’t represented very efficiently on the disk

 # Keys File extent Space used
 (ls -l) (ls -s)

 1 1024 8
 2 2048 8
 4 4096 8
 8 8192 48
 16 120832 120
 32 245760 208
 64 441344 296
 128 4251648 456
 256 12701696 1456
 512 21091328 2320
 1024 33284096 4128
 2048 536668160 11592
 4096 1065409536 22272

Even though we’re not storing that much data, the file extents get huge

Many systems can’t handle a file with an extent greater than 2GiB.

On these systems, O/N/SDBM are severely limited in the amount of data they can
store

(This output produced by sdbm_test.pl in your handout)

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 78

GDBM

GDBM does not have these data size problems

I used to use it all the time

Now I don’t; here’s why

In 1998 I was using it for a web user database for a major
client

The key was the user name and the value was the
user’s information

We had about 320,000 registered users

One day, the firstkey and nextkey routines stopped
producing all the keys

They would generate about 1,700 of the usernames and
then stop

I couldn’t get the list of our users!

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 79

GDBM

I sent a detailed bug report to the GNU folks, offering to do whatever I could to help

The reply said:

 I have heard of this happening before. I was not able to
 find out why. Do you have a backup of earlier versions so
 you can get most of your keys out? If so, you might try to
 recover by moving to DB-2.? routines. They are still being
 updated an developed. gdbm has not had any active
 development in years.

So I restored what I could from the backup tapes

I switched to Berkeley DB

I have not used GDBM since

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 80

DB_File

The best choice

Berkeley DB was good ten years ago and it has gotten better

Basic usage is very simple:

 use DB_File;
 tie %hash, ’DB_File’, $file or die ...;

Optional arguments:

 tie %hash, ’DB_File’, $file, O_RDONLY;

 tie %hash, ’DB_File’, $file, O_CREAT | O_RDWR;

 tie %hash, ’DB_File’, $file, O_CREAT | O_RDWR, 0666;

Now use %hash just like any other hash

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 81

Indexing Revisited
Here’s a hybrid approach to indexing

The bulk of the data will be in a plain text file

But the plain text file takes too long to search

So we’ll also have a DBM file that records record byte offsets

Then we can locate records quickly

Complete example code is in indexed.pl

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 82

Indexing Revisited
Searching will be fast:

 sub find {
 my ($fh, $dbm, $key) = @_;
 my $offset = $dbm->{$key};
 seek $fh, $offset, SEEK_SET;
 my $rec = <$fh>;
 return $rec;
 }

$fh is a filehandle on the (plain text) data file

$dbm is a reference to the DBM hash with the offset information

$key is the key we want to look up

We get the offset information from the DBM hash

Seek the filehandle to the right position in the text file

Read the right record instantly

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 83

Indexing Revisited
Where did the offset information come from?

 sub make_index {
 my ($fh, $dbm, $key_function) = @_;
 seek $fh, 0, SEEK_SET;
 %$dbm = ();
 my $pos = 0;
 while (<$fh>) {
 chomp;
 my $key = $key_function->($_);
 $dbm->{$key} = $pos;
 $pos = tell $fh;
 }
 }

$fh and $dbm are as before

$key_function takes a record from the file and says what the key should be

If the DBM eats the index, your homework is still intact

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 84

Indexing Revisited
A typical use:

 use DB_File;
 tie %by_name, ’DB_File’, "./pw_aux", O_CREAT|O_RDWR, 0666
 or die $!;
 open PASSWD, "<", "/etc/passwd" or die $!;

 make_index(*PASSWD, \%by_name,
 sub { (split /:/, $_[0], 2)[0] },
);

The key function here takes a password file line and extracts the username

We only need to call make_index once

(Until the password file changes)

After that, we can get as many fast lookups as we want:

 print find(*PASSWD, \%by_name, "mjd");

 mjd:x:119:100:Mark Jason Dominus:/home/mjd:/bin/bash

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 85

Indexing Revisited
We can also build multiple indices:

 open PASSWD, "<", "/etc/passwd" or die $!;
 tie %by_name, ’DB_File’, "./pw_aux", O_CREAT|O_RDWR, 0666
 or die $!;
 tie %by_uid, ’DB_File’, "./pw_uid", O_CREAT|O_RDWR, 0666
 or die $!;

 make_index(*PASSWD, \%by_name,
 sub { (split /:/, $_[0], 2)[0] },
);

 make_index(*PASSWD, \%by_uid,
 sub { (split /:/, $_[0], 3)[1] },
);

 print find(*PASSWD, \%by_name, ’mjd’);
 print find(*PASSWD, \%by_uid, 119);

(All this also works with untied hashes)

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 86

Ordered Hashes
DB_File actually supports three different file types

 tie %hash, ’DB_File’, $file, O_CREAT|O_RDWR, 0666, $DB_HASH;
 tie %hash, ’DB_File’, $file, O_CREAT|O_RDWR, 0666, $DB_BTREE;
 tie @array, ’DB_File’, $file, O_CREAT|O_RDWR, 0666, $DB_RECNO;

The default is DB_HASH which we’ve seen already

DB_RECNO associates a plain text file with an array

But Tie::File may be preferable, for a number of reasons

(See the handout)

DB_BTREE uses a different data structure called a B-tree

Also called a VSAM file by big-iron types

Unlike a hash, it keeps the records in order

For very large databases (1,000,000 records) lookup may be slower than hashes

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 87

Ordered Hashes
 tie %hash, ’DB_File’, $file, O_CREAT|O_RDWR, 0666, $DB_BTREE;

By default, the ordering is lexicographic:

 for (qw(red orange yellow green blue violet)) {
 $hash{$_} = length;
 }

 print join(" ", keys %hash), "\n";

 blue green orange red violet yellow

You may specify an alternative ordering:

 use DB_File;

 my $rev_btree = DB_File::BTREEINFO->new();
 $rev_btree->{compare} =
 sub {
 my ($a, $b) = @_;
 reverse($a) cmp reverse($b)
 };

 tie %hash, ’DB_File’, $file, O_CREAT|O_RDWR, 0666, $rev_btree;

 red orange blue green violet yellow

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 88

Partial Matching
 blue 4
 green 5
 orange 6
 red 3
 violet 6
 yellow 5

Because the keys in a B-tree are in order, you can do limited partial matching

As with Search::Dict, you can look for the first key that begins with some string

 my $db = tied %hash;
 my $k = "g";
 $db->seq($k, $v, R_CURSOR);
 print "$k => $v\n";

 green 5

Actually it produces the first key that is greater than or equal to $k

Under the appropriate comparison

If there is no such key, $k is unchanged, $v is undef, and seq returns true

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 89

Sequential Access
->seq provides generic sequential access to the keys

In the user-defined order

Note: C-style for loops coming up

To scan the keys forwards:

 my $db = tied %hash;
 my ($k, $v, $fail);
 for ($fail = $db->seq($k, $v, R_FIRST) ;
 ! $fail ;
 $fail = $db->seq($k, $v, R_NEXT)
) {
 print "$k => $v\n";
 }

Or backwards:

 for ($fail = $db->seq($k, $v, R_LAST);
 ! $fail;
 $fail = $db->seq($k, $v, R_PREV)
) {
 print "$k => $v\n";
 }

Or just the keys between $a and $b:

 $k = $a;
 for ($fail = $db->seq($k, $v, R_CURSOR);
 ! $fail && $k le $b;
 $fail = $db->seq($k, $v, R_NEXT)
) {
 print "$k => $v\n";
 }

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 90

Filters
Suppose you want to store complex data structures in a DB_File

This doesn’t work:

 $hash{numbers} = [1, 4, 2, 8, 5, 7];

The array is converted to a string, and the string is stored:

 print $hash{numbers}, "\n";
 ARRAY(0x8118d9c)

 $aref = $hash{numbers};
 print "@$aref\n";

 Can’t use string ("ARRAY(0x8118d9c)") as an ARRAY ref
 while "strict refs" in use...

This is a drawback of all DBM implementations

And indeed of the Unix operating system

There’s no OS support for storing anything except a lifeless byte sequence

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 91

Filters
We could use a serialization module like Storable

It will convert arbitrary values to strings, and back:

 use Storable;
 $hash{numbers} = freeze [1, 4, 2, 8, 5, 7];

 $aref = thaw $hash{numbers};
 print "@$aref\n";

 1 4 2 8 5 7

This is kind of a pain

DB_File will do it automatically:

 my $db = tied %hash;
 $db->filter_store_value(sub { $_ = Storable::freeze($_) });
 $db->filter_fetch_value(sub { $_ = Storable::thaw($_) });

Now this works:

 $hash{numbers} = [1, 4, 2, 8, 5, 7];
 $aref = $hash{numbers};
 print "@$aref\n";

freeze and thaw are called automatically

Note that the filters use $_ for input and output

Similarly, filter_store_key and filter_fetch_key

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 92

BerkeleyDB

The Berkeley DB library has many other fascinating features

Not all are available through DB_File

For example, there is a DB_Queue file type

This is like an array

But it is optimized for push and shift operations

You might use this to store a log file

When the log file exceeds a certain size, you shift the old records off the front

There is an option to keep the values for duplicate keys in a user-defined order

It supports transactions

The BerkeleyDB module provides interfaces to this functionality

It’s worth skimming through the manual

Check out http://www.sleepycat.com/docs/reftoc.html for a tutorial and
overview

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 93

Thank You!
Any questions?

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 94

Bonus Slides
Classes change from year to year

Some things move in, others come out

There’s never enough time to cover all the material I’d like to

But you may as well see the deleted slides

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 95

Tie::File Internals
Inside, Tie::File uses a combination of several of the techniques we’ve seen

It maintains an offset table internally

 $z = $FILE[57];

This checks the offsets table for $offsets[57]

If it’s already present, Tie::File seeks to the right location and reads the
record

If not, Tie::File scans from the last known position up to line 57

 sub _fetch {
 my ($self, $n) = @_;
 ...

 if ($#{$self->{offsets}} < $n) {
 return if $self->{eof};
 my $o = $self->_fill_offsets_to($n);
 # If it’s still undefined, there is no such record,
 # so return ’undef’
 return unless defined $o;
 }

 my $fh = $self->{FH};
 # we can do this now that offsets is populated
 $self->_seek($n);
 my $rec = $self->_read_record;
 ...

 $rec;
 }

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 96

Multiple Values
Unlike a hash, a B-tree may store more than one value per key

To enable this, use R_DUP:

 my $dup_btree = DB_File::BTREEINFO->new();
 $dup_btree->{flags} = R_DUP;
 tie %hash, ’DB_File’, $file, O_CREAT|O_RDWR, 0666, $dup_btree;

 while (<FRUITS>) {
 my ($color, $fruit) = split / /, $_, 2;
 $hash{$color} = $fruit;
 }

Ordinary hash assignment actually stores the new value in addition to the old one

Hash retrieval recovers only the first stored value

But ->seq will recover all the values:

 $k = "red";
 for ($fail = $db->seq($k, $v, R_CURSOR);
 ! $fail && $k eq "red";
 $fail = $db->seq($k, $v, R_NEXT)) {
 print "$k: $v\n";
 }

 red: apple
 red: cherry
 red: strawberry
 red: raspberry

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 97

Multiple Values
For a user-defined comparison, ’identical’ keys might not be exactly the same

Suppose the comparison is case-insensitive:

 my $my_btree = DB_File::BTREEINFO->new();
 $my_btree->{flags} = R_DUP;
 $my_btree->{compare} = sub { lc $_[0] cmp lc $_[1] };
 tie %hash, ’DB_File’, $file, O_CREAT|O_RDWR, 0666, $my_btree;

Then Red, red, and RED are all considered ’the same’

 for ([’Red’, ’apple’], [’red’, ’cherry’],
 [’RED’, ’strawberry’], [’blUe’, ’grape’]) {
 my ($key, $value) = @$_;
 $hash{$key} = $value;
 }

Only the first of these three is actually stored

The hash interface will report the duplicate keys:

 print join(" ", keys %hash), "\n";

 blUe Red Red Red

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 98

Multiple Values
 $my_btree->{compare} = sub { lc $_[0] cmp lc $_[1] };

 %hash = (Red => ’apple’, red => ’cherry’, RED => ’strawberry’,
 blUe => ’grape’);

Since the keys are insensitive, the hash interface can’t distinguish them:

 print "$hash{blUe} $hash{red} $hash{Red} $hash{RED}\n";

 grape apple apple apple

But ->seq can recover the values:

 my $db = tied %hash;
 $k = $START = ’red’;
 for ($fail = $db->seq($k, $v, R_CURSOR);
 ! $fail;
 $fail = $db->seq($k, $v, R_NEXT)) {
 print "$k: $v\n";
 }

 Red: apple
 Red: cherry
 Red: strawberry

Next Copyright © 2003 M. J. Dominus

Next Lightweight Databases 99

Multiple Values
There are some special methods for dealing with duplicate keys

This recovers a list of the values associated with the given key:

 @a = $db->get_dup($Key);

This is a count of the number of appearances of the key:

 $n = $db->get_dup($Key);

You can checks to see if the key is associated with a certain value

If the pair is found, this returns false and positions the cursor at the specified
pair

 $failed = $db->find_dup($Key, $Value);

You can then iterate over preceding or following key-value pairs with ->seq

You can delete just one key-value pair:

 $failed = $db->del_dup($Key, $Value);

This returns false on success

Next Copyright © 2003 M. J. Dominus

