Next Lightweight Databases

1 Next Lightweight Databases 2

"How do | deletealinefrom afile?"

(Strategiesfor Lightweight Databases)
Mark Jason Dominus

Plover Systems Co.
nj d-t pc- | wdb+@! over. com

v1.2 (September, 2003)

FAQ

® perlfag5 says:

How do | change one line in a file/delete a line in a file/insert a li
the middle of a file/append to the beginning of a file?

L7

® This class will answer these questions

Next b7 Copyright © 2003 M. J. Domint
Next <,/>Q 7 Copyright © 2003 M. J. Domint
Next Lightweight Databases 3 Next Lightweight Databases 4
Text Files

What We'll Do
® Plain text files
O The old 'copy the file’ method
O seek and indexing
O Tie::File
©® DBM files
O DB File

® Various applications and case studies

® Text files are used all the time for lightweight databases
O For example, Unix'¢ et c/ passwd file
O Apache’s analogous password files

O Databases and spreadsheets dumped into 'CSV’ (comma-separated vall
format

O Server log files

Copyright © 2003 M. J. Domint

F>Q 7

Next

Next %Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 5 Next Lightweight Databases 6

Rotating Log File Deleting a User
® Here’s a typical problem: ® Another typical problem:
O Append a line to the end of a log file O Userbi | | g has been fired
O But the log file should contain only the most recent 100 lines O We want to remove his account
O If it's longer than that, the old lines should be removed from the beginnin O We should delete his entry from the password file
2 nj d: A2l JWVp5BqDA
)) i si : ALgDcdPxnBSOMY
tchrist: A3Jye3/ wLzQ\s
_ _ | enhar d: A4z2KThzpHppE
== == % gnat : A51FSABJr nV6M
oznoi d: A61i 7deQLD. 82
* 2 100 rspier: B2l k7j M Ot gk
100 101 bi || g: B35Tsi JGzy/ 3w
| ayer: B6/ EAQdz9Dsss
naeda: Ki kFYFOSnGTwM
Next K7 Copyright © 2003 M. J. Domint
Next YRV Copyright © 2003 M. J. Domint
Next Lightweight Databases 7 Next Lightweight Databases 8

Copy theFile Copy theFile

® The simplest and most often-cited solution is to copy the file ® Perl's-i option can make this easy:

O Make the changes as you write the copy perl -i -F: -lane 'print unless $F[0] eq "billg"’ .users

O Then replace the original with the copy ® -i opens the original file for reading

® For example, deletingj | | g: ped

sub del ete_user {
my ($file, $target_user) = @;
open ny $rfh, "<", $file or die ...;
open ny $wfh, ">", "$file.tnp" or die ...; RN R,
while (<$rfh>) {
ny ($user) = split /:/; file
print $wfh unless $user eq $target_user;

}
close $rfh; close $wfh or die ...;
renane "$file.tmp", $file or die ...;

}
® Or appending to a log file:

® Then removes it

® The reopens the same name for writing

sub append_| og { perl
ny ($file, @ewecs) = @;
open ny $rfh, "<", $file or die ...;
open ny $wfh, ">", "$file.tnp" or die...; /
ny @ecs = (<$rfh> @ewecs); H
splice @ecs, 0, @ecs-$MAXRECS if @ecs > $MAXRECS; ¢ {old file) : file
print $wfh @ecs; : :
close $rfh; close $wfh or die ...;

renane "$file.tmp", $file or die ...; . . .
} ® Redirects standard output into the new file

® Data written toSTDOUT is captured in the file

Next f&@ 7 Copyright © 2003 M. J. Domint

Next YRV Copyright © 2003 M. J. Domint

Next Lightweight Databases

9 Next

Lightweight Databases

10

-i. bak
® Alternatively, you can have Perl leave behind a backup file
perl -i.bak -F: -lane 'print unless $F[0] eq "billg"' .users
® This is the same as

® Except Perl does not remove the original file

O Instead, it renames it td | e. bak

® [f Perl crashes partway through, the old data is still availabilelia. bak

O (Or if you decide you don't like the change.)

Using-i insidea program

perl -i.bak -F: -lane 'print unless $F[0] eq "billg"" .users

® That's all very well as a shell command

® What if you want to removei | | g as part of a larger Perl program?

® Of course, one option is obviously:

systen(qq{per! -i.bak -F: -lane
"print unless \$F[0] eq "billg"' .users});

Next

Next BT

Next Lightweight Databases

Copyright © 2003 M. J. Domint

11 Next

7}@ A Copyright © 2003 M. J. Domint

Lightweight Databases

12

Using-i insidea program
® Using the-i facilities from inside a program requires a little trick
® The files thati operates on are the ones name@\RrGv
® The specia$~| variable holds the backup file suffix
O (Empty string if no backup)
® Toengagei, set Up@RGY and$”l and run ahi | e <> loop:

sub del ete_user {
ny ($file, $target_user) = @;

local $7°l = ".bak";
local @RGV = ($file);
while (<>) {

ny ($user) = split /:/;
print unless $user eq $target_user;
}
}

® Now the opening and renaming are all implicit

® Usel ocal sothat”l and@RGV recover their old values when the function is d

Problemswith -i

® For casual tasks; is very handy
® But if Perl crashes or the system goes down in the middle, the data is lost
° Everj if Perldoesn’t crash, the file is in an inconsistent state while it's being
rewritten
® Hair-raising example:
perl -i.bak -F: -lane 'print unless $F[0] eq "billg"" /etc/passwd
® Suppose perl gets swapped out just after it renames passwd
O Now the password file is empty
O Anyone can log in with no password
® We need a more reliable strategy
Next f&@ 7 Copyright © 2003 M. J. Domint

Next 7>Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 13

Next Lightweight Databases 14

Copy With Changes

® This is something like what does:

sub del ete_user {

my ($file, $target_user) = @;
open ny $rfh, "<", $file or die ...;
renane $file, "$file.bak" or die ...;
open ny $wfh, ">", $file or die ...;
while (<$rfh>) {

ny ($user) = split /:/;

print $wfh unless $user eq $target_user;

close $rfh; close $wfh;

® The problem is that theenane is too soon
O We shouldn’t replace the old contents with new so early

O We should wait until the complete new file is in place

Copyright © 2003 M. J. Domint

Next %Q 7

Next Lightweight Databases 15

Copy With Changes

® This version (which we saw earlier) is safer:

sub del ete_user {

my ($file, $target_user) = @;
open ny $rfh, "<", $file or die ...;
open ny $wfh, ">", "$file.tnp" or die ...;
while (<$rfh>) {

ny ($user) = split /:/;

print $wfh unless $user eq $target_user;

}

close $rfh or die ...;

close $wfh or die ...;

renane "$file.tmp", $file or die ...;

}

® renane is guaranteed to katomic:
O At every instant, exactly one version of the file exists
O If the function fails, or Perl crashes, the old file is untouched
O At the moment theenane succeeds, the entire new file is in place
O (Warning:file.tnp andfi| e must be on the same filesystem)
® Why doesn’ti do it this way?

O No good reason; coming in 5.10.

Next %Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 16

Essential Problem
® Unix filesystems treat files like a sequence of bytes
® The basic operations are:
O read a certain amount of data at the current position
O write a certain amount of data at the current position
O seek - adjust the current position
O truncat e the file to a certain length

® You canoverwrite data in place:

L] L 2 3 4 5 6 7 8 9 Lo LL 12 L3 L4 L5
L [r]Ef*R]e] [a]efpf[t]e] [p[i]e]-
] L 2 3 4 5 6 7 8 9 L0 LL 12 L3 L4 L5
L] [r]Efxfe] Jefefafelb] Jefife]-

Next %Q 7

Copyright © 2003 M. J. Domint

Essential Problem

L 2 3 4 5 6 7 8 9
| [t[E]k[e] [el®]e]-

Hle

L 2 3 4 5 6 7 8 9 L0 LL 12 L3 L4 L5
| [H[E]x]e] Jafefp]t]e] [e]ife]-

Hle

® But there is no option timsert or remove data
O To insert, you must copy the following data forward

O To remove, you must copy the following data backward

L 2 3 4 5 6 7 8 9
| [t[E]k[e] [el®]e]-

Hle

(Other OSes may support more powerful operations)

Next BT

Copyright © 2003 M. J. Domint

Next Lightweight Databases 17 Next Lightweight Databases 18
Essential Problem Fundamental Operations
® Moreover, byte-oriented operations are inconvenient for record-oriented prog Read

® Counting the number of bytes is easy:
ny $n_bytes = -s $file;
® Counting the number of lines is hard:

open F, "<", $file;

while (<F>) {
$n_l i nes++;
® Reading or writing at a certain byte position is easy:
seek F, $B_POSI TI ON, SEEK_SET;
® Reading or writing at a certain line position is hard:

seek F, 0, SEEK_SET; $REC = 1;
<F> until $REC++ >= $L_PCSI TI ON,

® The copy-the-file technique is simple, but it always pays the maximum possit

read(FH, ny($buffer), $length);

® The standard 1/O library enables reading by records

Wri

O Data is read a block (4k or 8k) at a time into an internal buffer
O read and<. . . > copy data out of the buffer
$record = <FH>;
te
print FH $buffer;

Note the opposite ofead isnot wri t e; it's pri nt

Truncate

truncate FH, $length;
truncate $filename, $length;

Next L7 Copyright © 2003 M. J. Domint Next YRV Copyright © 2003 M. J. Domint
Next Lightweight Databases 19 Next Lightweight Databases 20
Seek Costs
® seek adjusts the current position of a filehandle ® We'll see many different methods for searching and maintaining flat files
use Fcntl ':seek’; # For SEEK_SET etc. ® They all have tradeoffs
® Absolute position: ® Some support quick searches
k FH, ition, SEEK_SET; ’ I
see $posi tion ~ ® Some support quick modifications
® Relative position:
® There's always a tradeoff
seek FH, $position, SEEK_CUR
Copy the file
® Relative to the end of the file:
Add record S
seek FH, $position, SEEK_END; ﬁ'df}s record H
® tell returns the current absolute position: ® HereSis the size of the file
iti =tell FH " . .
my $posi tion € ® This means that it takes about twice as long to deal with a file that is twice as
read, wite, and seek FH here ...
Successful search S/ 2
seek FH, $position, SEEK SET; Unsuccessful search S
® This is guaranteed to put the handle back where it was at the timet ef the ® On average, we only have to search half the file if the record is there
® But the whole file if not

Next %Q 7

Copyright © 2003 M. J. Domint

Next 7>Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 21 Next Lightweight Databases 22
Adding Records Sorted Order
Add record S o |f we keep the file in sorted order, searching is faster
® With a plain flat text file, there’s a shortcut for adding records ® We can use hinary search
® Adding a record at thend of the file is very cheap O This is the method we use for searching the telephone book
Append to begi nning S .
Append to niddle s ® Idea:
Append to end 1
O Look at a record near the middle of the file
® The code looks like this:
m [f the record is too early, look only at the last half of the file
sub add_user
%Cgffi',:;e’ snew_user_data) = @ m |f the record is too late, look only at the first half of the file
open F, ">>", $file or return;
print F $new_ user_data, "\n"; O Repeat on successively smaller segments of the file
O The standardear ch: : bi ct module does this
Next <,/>Q 7 Copyright © 2003 M. J. Domint
Next i&Q 7 Copyright © 2003 M. J. Domint
Next Lightweight Databases 23 Next Lightweight Databases 24
Binary Search Binary Search

® Binary search is notoriously difficult to code
O There are a lot of funny edge cases

@ |f you write it yourself, test very carefully

® Or useSearch: : Di ct

® Or the (carefully tested) code in your handouts

Next %Q 7

Copyright © 2003 M. J. Domint

® This function gets a filehandle open to a sorted file

® [t finds the first line in the file that ige $key

® Returns that line and leavgsh positioned at that line

sub search
ny ($fh, $key) = @;

nmy ($lo, $hi) = (0, -s $fh);

while (1) {
my $md = int(($lo + $hi)/2);

if ($mid) {
seek $fh, $mid-1, SEEK SET;
ny $junk = <$f h>;

} else {
seek $fh, 0, SEEK_SET;

ny $start = tell $fh;

ny $rec = <$f h>;

return unl ess defined $rec;
chonp $rec;

if ($hi == $lo) {
seek $fh, $start, SEEK SET;
return $rec

}

if ($rec It $key) { $lo
el se { $hi
}
}

$mid+l }
$mid }

® This issearchil. pl in your handout

Next

<

h7 Copyright © 2003 M. J. Domint

Next Lightweight Databases 25

Next Lightweight Databases 26

Binary Search

® What's with this?

if ($mid) {
seek $fh, $mid-1, SEEK SET;
ny $junk = <$f h>;

} else ...

ny $start = tell
ny $rec = <$f h>;

$fh;

® Well, we want the record that starts at or afterd

O But$ni d might point into the middle of a record

3mid
$mid-1 l
l $start
| JUNK \n RECORD \n
® We back up one space in casdadésn’'t point into the middle:
smid
smid-1 ‘
Sstart
\n RECORD \n

® Note: This trick only works whenength($/) =1

Next BT

Copyright © 2003 M. J. Domint

Next Lightweight Databases 27

Binary Search
® search3. pl works for any value af/
® |t's similar to the innards ddear ch: : Di ct
® |t uses binary search only to locate bhack that contains the target
® Then it does linear search on the block
® |t's about 75% slower thasear chi. pl
® Also, it might fail if any of the records are longer than a disk block

® The code is at the back of your book

Next %Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 28

Sorted Order

® Here’s a benchmark result comparing linear search against binary:

user sys total
Linear: 9.98 0.23 10.21
Binary: 0.01 0.04 0.05

® This is on ten randomly selected keys
® The target file contained 234,693 lines

® Here’s 1000 searches wigkar chl. pl andsearch3. pl :

NULL: 0.00 0.00 0.00
Searchl: 3.00 O0.44 3.44
Search3: 5.58 0.39 5.97

Next <,/>Q 7 Copyright © 2003 M. J. Domint

Sorted Order

® search2. pl in your handout is likeear chi. pl , but a little more general
® |t takes a search function that compares records

O The function should return a negative value if the current record is too e
® search2. pl finds the first record in the file that is not 'too early’

® For example, if your file is the password file, sorted on field 2:

sear ch(\ * PASSVD,
sub { nmy ($uid) = (split /:/)[1];
$uid <=> 119 });

® This locates the first record whose UID is at least 119

Next %Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 29

Next Lightweight Databases 30

Sorted Order

® The big drawback of sorted files is that they're hard to update
® You can't just append a new record at the end

® Comparison:

Unsort ed Sorted
Lookup Sl ow Fast
Add Fast Sl ow
Delete Slow Sl ow

® An alternative is a hybrid approach

O Have two files, one sorted, one unsorted
® For lookups, search the sorted file first, then the unsorted file
® To add records, append to the unsorted file

® Periodically merge the unsorted file into the sorted one

Next %Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 31

M odifying Recor ds
® Modifying records in-place is tricky
® Because there might not be enough room for the new version

® Or the new version might not be big enough to fill all the space

Next i&Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 32

Overwriting Records

® Suppose we are replacing a record with anothexaztly the same length

0 L 2 3 4 5 6 7 & 9 [V 2 13 4 15 6 17 I8 19
DEBUEBEEEE0E0EEaUE DT

[13 15 16 18

0 L 2 3 4 6 7 8 9 12 14 17 19
FET L PO P[P+

® Then we need not rewrite the entire file

® For example:

sub uppercase_usernane {
nmy ($fh, $username) =
seek $fh, 0, SEEK_SET;
while (<$fh>) {
ny ($u, $rest) =split /:/, $_, 2;
next unless $u eq $usernane;
seek $fh, -length($_), SEEK CUR
print $fh uc($u);
return;
}
}

® We search the file as usual

® When we find the record we want, we back up and overwrite it in place

Next i&Q 7

Copyright © 2003 M. J. Domint

Bytesvs. Positions

® This looks innocuous, but it opens a 55-gallon drum of
worms:
seek $fh,

-length($_), SEEK CUR

® Here we wanted to back up to the beginning of the currd
record

® This won't always work
® Seek positions don't always correspond to character offsets
® Consider a DOS file:

I like pielr\n
Especial ly apple.\r\n

® After reading the first recordel | is likely to returni2
® Buts$_ will contain"1 1ike pie\n" (11 characters)
O The\r\n is translated to justn on input

® The problem gets much worse with variable-length character encodings like (

Next 7>Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 33

Next Lightweight Databases 34

Bytesvs. Positions
@ | could probably talk all day about the various problems that come up

® So instead, we’'ll have one slide

This always works, no matter what:
ny $position = tell FH
read and wite FH here ...

seek FH, $position, SEEK SET;

This always works, no matter what:
seek FH, 0, SEEK_SET;

® Bytes and characters are the same on Unix systems when files have 8-bit en
O (Like ordinary text files, or files with ISO-8859 characters)

@ Ditto for DOS/Windows systeni$ the filehandle is ifinary mode:

bi nnode(FH) ;

Next 7>Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 35

Gappy Files

o |f we need to modify variable-length records, we can do that

® Recall that the problems are:
1. The new version of the record might not be big enough to fill all the spac
2. Or there might not be enough room for the new version in the old space

® (1) is easy to deal with: Just leave behind some padding characters

® (2) can't be dealt with; the record must move
O Replace it with padding and put the new record at the end

® You also have to fix your search function to ignore the padding

® Example code is inodi fy-i n- pl ace. pl ; example data im P

Next 7>Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 36

Gappy Files
® Searching first:

sub find {
ny ($fh, skey) = @;
seek $fh, 0, SEEK_SET;

ny $pos = 0O;
while (<$fh>) {
chonp;
next if /MNO0*$/;
if (index($_, $key) == 0) {
seek $fh, $pos, SEEK_SET;

return $_;
}
$pos = tell $fh;
return;

® This locates the first record that starts véikiey and returns it
O Also leavessf h positioned at the start of that record
® The key here is to ignore any line that is all NUL characters

O These represent 'gaps’ from which data has been removed

Next %Q 7

Copyright © 2003 M. J. Domint

Gappy Files

sub nodify {
ny ($fh, $rec) = @;
my $pos = tell $fh;

chomp(ny $ol drec = <$fh>);
seek $fh, $pos, SEEK SET;

if (length $oldrec == length $rec) {
easy case
print $fh $rec;

-

elsif (length $rec < length $oldrec) {
ny $shortfall = length($oldrec) - |ength($rec);
ny $fill = "\0" x ($shortfall-1);
print $fh $rec, "\n", $fill;
continued ...

® In this case, the new record will fit in the old space

® Say we're changingchri st : A3Jye3/ wLzQNs\ n tot om A3Jye3/ wLzQNs\ n
O We actually change it toom A3Jye3/ wLzQNs\ n\ 0\ 0\ O\ n

O This is the same length

® find will ignore the\ 0\ 0\ 0\ n 'gap’

Next %Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 37

Next Lightweight Databases 38

Gappy Files
sub nodify {
continued ...
} else { # Newrecord is too big
ny $fill = "\0" x |ength($oldrec);
print $fh $fill;
seek $fh, 0, SEEK END; # New record goes at the end
print $fh $rec, "\n";
}
}

® Here the new record won't fit
O We remove the old record entirely, and put the new one at the end
® Say we're changingnat : AS1FSA8Jr mv6M n tot or ki ngt on: A51FSA8Jr nV6M n

O We replacegnat : A51FSA8Jr mV6M n with
\ 0\ 0\ 0\ O\ 0\ O\ O\ 0\ O\ O\ O\ O\ O\ O\ O\ O\ O\ O\ n

O We putt or ki ngt on: A51FSA8Jr nV6M n at the end of the file
® find will ignore the\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ O\ 0\ O\ 0\ O\ O\ 0\ O\ 0\ O\ O\ n 'gap’

® A sufficiently clever implementation might put something else into the gap lat

Next i&Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 39

Gappy Files

® A variation: fill the gaps with newlines instead of NULs:

if'(length $oldrec == length $rec) {
easy case
print $fh $rec;

} elsif (length $rec < length $oldrec) {
ny $shortfall = I ength($oldrec) - |ength($rec);
nmy $fill ="\n" x $shortfall;
print $fh $rec, "\n", $fill;
} else { # Newrecord is too big
ny $fill = "\n" x length($oldrec);
print $fh $fill;
seek $fh, 0, SEEK END; # New record goes at the end
print $fh $rec, "\n";

® Then havé i nd ignore blank lines

O Seeni p2. pl in the handout

Next 7>Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 40

Fixed-Length Records

o If all the records are the same length, it becomes easy to modify them
O The 'gappy files’ code can dispense with the two hard cases
® Suppose the file has the following format:
O 8-character username
O 5-character user ID
O 13-character encrypted password
O 20-character surname
O 18-character given name

® Each record is exactly 64 bytes

billg 666 xyPXkPQTj § nUGat es WIliam

nmd 119 AL2FMIJGN\swpYDomi nus Mark Jason

| onguser 1234530Ubq7V0pV9doLonguser nane- Ear wi ggFeat her st onehaughs
.. qQYY3gYYOyAwal | Larry

larry

® Note that fields may now contain spaces or any other data

Next i&Q 7 Copyright © 2003 M. J. Domint

Fixed-Length Records

billg 666 xyPXkPQTj § nUGat es WIliam

md 119 AL2FMIJGN\swpYDomi nus Mark Jason

| onguser 1234530Ubq7V0pV9doLonguser nane- Ear wi ggFeat her st onehaughs
.. qQYY3gYYOyAwal | Larry

larry
® Code to search for a user now looks like this:

sub find_user {
my ($fh, $user) = @;
seek $fh, 0, SEEK_SET;
while (read($fh, ny($rec), 64) == 64) {
ny (@ield) = unpack "A8 A5 A13 A20 A18",
next unless $user eq $field[0];
return @ield;

$rec;

return;

® unpack gets aformat string that describes the data format
® A8 is a space-padded alphabetic field of length 8
® Trailing spaces are trimmed off

® ag is similar, but NUL-padded (0")

Next i&Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 41

Next Lightweight Databases 42

Fixed-Length Records
while (read($fh, ny($rec), 64) == 64) {
_
® Alternative: Starting in 5.6.0, you may say

sub find_user

my ($fh, $user) = @;

seek $fh, 0, SEEK_SET;

local $/ =\64;

while ($rec = <$f h>)
ny (@ield) = unpack "A8 A5 A13 A20 A18",
next unless $user eq $field[0];
return @ield;

$rec;

Fixed-L ength Records

® Searching takes just as long as with variable-length records
® The win is when we want to modify a record

sub nodi fy_user_data {
ny ($fh, Suser, @ewdata) = @;
unl ess (find_user($fh, $user)) {
seek $fh, 0, SEEK_END; # Mowve to end of file
}
print $fh pack "A8 A5 A13 A20 A18",

$user, @ewdat a;

® Before, modifying was difficult in general

}
} return; O The only easy way was to copy the entire file
O Now modifying in-place is cheap
Next <,/>Q 7 Copyright © 2003 M. J. Domint
Next b7 Copyright © 2003 M. J. Domint
Next Lightweight Databases 43 Next Lightweight Databases 44
Numeric Indices lastl og

® |n some cases, we can speed up searching
® Suppose we want to look up usernames by UID

® Trick: Record number holds information for usen#

r oot 0 PLM VF. est SxwSuper user

larry 1 .. gqQYY3gYYOyAwal | Larry
GARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBACGEG
GARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBACGEG

GARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEG
GARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEG
nj d 119 A12FMIIG\N5wpYDoni nus Mar k

GARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEG

GARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEGARBAGEG

billg 666 xyPXkPQTj G nUGat es WIliam
® Locating a user is now very fast:
sub find_user_by_uid {
ny ($fh, $uid) = @;
seek $fh, $uid * 64, SEEK_SET;
if (read($fh, ny($rec), 64) == 64) {
ny (@ield) = unpack "A8 A5 Al3 A20 A18", $rec;

return @ield;

return;

Next %Q 7

Copyright © 2003 M. J. Domint

® Unix | ast | og records are stored in this way

sub get_lastlog_info {
my $user = shift;
$user = getpwnan($user) if Suser =~ /\D/;
return unless defined $user;
open L, "<", "/var/log/lastlog" or
seek L, 292 * $user, SEEK SET,

return;

return unless read(L, my($buf), 292) == 292:
ny ($tine, $tty, $host) = unpack "i a32 a256", $buf;
return ($tinme, $tty, $host);
}
® To use:

if (nmy ($time, $tty,

$host) = get_lastlog_info(shift)) {
print

"$user on $tty from $host\n\tat ",

scalar(localtime $tine), "\n";

} else {
print "S$user

never |ogged in\n";

% perl lastlog.pl hkang
hkang on pts/18 from evrtwal-ar10-4-61-239- 206. evrtwal. dsl - ver

at Sat Apr 19 15:45:56 2003
% perl lastlog.pl ww
wwv never |ogged in

® Complete code ihast | og. pl

Next </>Q z

Copyright © 2003 M. J. Domint

Next

Lightweight Databases 45 Next Lightweight Databases 46
Indexing Indexing
® We can combine the speed of fixed-length records with the flexibility of Index File Main Data File
variable-length records (1) [Tarry:lz..qQY¥3gy¥0yA:Wall:Llarry\n
2 longuser:12345:300bg?¥0pV¥%do: Longusername-Earwigg:Feat herstonehaughs\n
@ |dea: Make arnndex that records the position at which each record begins rrid:118:A1ZFMIJENSwpY Domi nus Mark Jason'n
119 Froot 10 :PLM/VF . est3xw:Super user:in
. . L poillg: 666:xyPXKPQTICin0:Gates:William\n
® The index itself is fixed-length o
Igdex File Main Data File
1 {larry:l:..qQY¥3gy¥OyaArWall:Larry\n ® To look up a user by UID:
2 longuser:12345:300bg?¥0pV¥%do: Longusername-Earwigg:Feat herstonehaughs\n
Fmid:119:A12FMTIGNSwpY tDominus::Mark Jasonin sub find_user_by uid {
119 ‘IL.)Dt:EI:PLM/VFAESthw:SupEI user?\n ny ($f h, $index_fh, $ui d = @;
rbillg: 666:xyPXkPQTICinU:Gates:William\n seek $i ndex fh, $u| d * 10, SEEK_SET;
666 if (read($i ndexff h, ny($r ec) 10) == 10) {
nmy ($offset) = unpack "A10", $rec;
seek $fh, $offset, SEEKfSET;
nmy $record = <$f h>;
return defined $record ? split /:/, $record : ();
< }
Next K7 Copyright © 2003 M. J. Domint return;
Next f&Q 7 Copyright © 2003 M. J. Domint
Next Lightweight Databases a7 Next Lightweight Databases 48
Indexing Void Fields

® That's great, but where did the index file come from?
® Index files are easy to build:

sub build_index_for_users {
my ($fh, $index_fh) = @;
seek $fh, 0, SEEK_SET;
seek $index_fh, 0, SEEK_SET;
truncate $index_fh, 0;
ny $pos = tell $fh;
while (<$fh>)
ny $uid = (split /:/)[1];

Discard ol d index

seek $index_fh, $uid * 10, SEEK_SET:
print $index_fh, pack "A10", $pos;
$pos = tell $fh;
}
}
Next YRV Copyright © 2003 M. J. Domint

® There's a potential problem with the previous slide’s code
® Suppose there is no user #2
® find_user_by_uid will go to the right place in the index
O It will read 10 nonsense bytes
O Then it will read from a nonsense position in the data file

® Solution: Fill nonsense fields with a special 'no such user’ value:

sub buil d_index_for_users (
ny ($fh, $index_fh) =
seek $fh, 0, SEEK SET;

ny $pos = tell $fh;
ny @osition;
while (<$fh>) {
ny $uid = (split /:/)[1];

$posi tion[$ui d]

= $pos;
$pos = tell $fh;

}

® (Continued...)

Next %Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 49

Next Lightweight Databases 50

Void Fields

® (Continued...)

seek $index_fh, 0, SEEK_SET;
truncate $index_fh, 0;
for (@osition) {
if (defined) {
print $index_fh pack("A10", $_);
} else
print $index_fh "NoSuchUser";

Discard ol d index

Generic Text Indices

® Sometimes the index number is just the record number:

sub bui | d_index_for_text {
my ($fh, $index_fh) = @;
seek $fh, 0, SEEK_SET;
seek $index_fh, 0, SEEK_SET;
truncate $index_fh, 0;
ny $pos = tell $fh;
while (<$fh>) {
print $index_fh, pack "A10", $pos;
f h;

Discard ol d index

} $pos = tell
} }
}
® find_user_by_uid then gets:
return if ny $offset eq 'NoSuchUser’;
Next b7 Copyright © 2003 M. J. Domint

Next b7 Copyright © 2003 M. J. Domint
Next Lightweight Databases 51 Next Lightweight Databases 52
Packed Offsets Tie::File

® Instead of making index numbers 10-byte strings, use 4-byte machine integel
print $index_fh, pack "N', $pos;

® Instead of 0 ", we use'\ x00\ x00\ x00\ x00"

® Instead of 1 ", we use'\ x00\ x00\ x00\ x01"

® Instead of 10 ", we use'\ x00\ x00\ x00\ x0a"

® Instead of 1000000000", we US€ \ x3b\ x9a\ xca\ x00"

O Benefit: Smaller index

Next

$&7

Copyright © 2003 M. J. Domint

® Perl 5.6.1 introduced a new module
calledTie::File

® |t makes a file look like an array

® Each line in the file becomes an arra
element

® Reading or modifying the array reads|
modifies the file

® | wrote it because | didn't like the
answer to the FAQ question:

How do | change one li
in a file?

® The answer wasn't as helpful as | wo
have liked:

Those are operations of a text editor.
Perl is not a text editor.

Next

YR

Copyright © 2003 M. J. Domint

Next Lightweight Databases 53 Next Lightweight Databases 54
Tie::Fil e Examples Tie::Fil e Examples
How do | change one line in a file? How do | delete a line in a file?
tie @QINE, 'Tie::File, "ny_file.txt’ or die ...; for $n (reverse 0 .. $#LINE) {
for (@QINE) { if (is_snide_answer_to_FAQS$LINE[$n])) {
if (/not a text editor/) { splice @INE, $n, 1;
s/ not/ now ;
last; }
}
} or:
ny $spliced = 0;
for $n (0 .. $#LINE) { .
Next 7 Copyright © 2003 M. . Domin H (1 sni de ansyer _to PAQUSLINELSn - Sspli ced]))
$spl i ced++;
}
or:
@nide = grep is_snide_answer_to FAQ($LI NE[$ 1)), 0..$#LINE;
for (reverse @nide) { splice @QINE, $_, 1}
Next w7 Copyright © 2003 M. J. Domint
Next Lightweight Databases 55 Next Lightweight Databases 56
Tie::Fil e Examples Tie::Fil e Examples
How do I insert a line in the middle of a file? How do | append to the beginning of a file?
for my $n (0 .. S$#LINE) { tie @QOG 'Tie::File', 'DrainC.log or die ...;
if (SLINE[$n] =~ /<!--insert here-->/) { unshift @CG $new recordl $new record2, @mwre_new records;
splice @INE, $n+l, 0, $new htni_text;
| ast;
}
untie @INE; Next f&Q? Copyright © 2003 M. J. Domint

Next w7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 57 Next Lightweight Databases 58
Tie::Fil e Examples del et e_user Revisited
What Else? ® Heresfil e refers to a tied array instead of a filehandle:
tie @ILE 'Tie::File, $file or die ...; sub del ete_user {
ny ($file, $target _user) = @;
push @I LE, $new | ast_record; for ny $n (0 $usfile) {
ny $ol d_| ast_record = pop @l LE; ny ($user) = split /:/, $file->[$n];
ny $old_first_record = shift @lLE; next unl ess $user eq $target _user;
_| ! splice @file, $n, 1;
Truncate or extend the file last;
$#FI LE = 100; } }
How long is the file? . i
$n_lines = @ILE ® Or we might even use this:
#Olerwriteth_efil_e sub deleeuser(
@ILE = gw(| like pie); ny ($file, $target _user) = @;
@file = grep !/~$target _user:/, @file;
}
; ?
Next 7}@ A Copyright © 2003 M. J. Domint ® Wasn't that easy?
® Downside: The short version reads the entire file into memory
Next <,/>Q 7 Copyright © 2003 M. J. Domint
Next Lightweight Databases 59 Next Lightweight Databases 60

upper case_user nane Revisited

® This is even easier:

sub uppercase_usernane {
my ($file, $usernane) = @;
for (@file) {
last if s/~$usernane:/\Uusernane:/;
}
}

® |t's also efficient

Copyright © 2003 M. J. Domint

Next HR7

Rotating Log File

1 2
2 2 3
3
= =
99
99 99 100
100 101
® Tie::File solution:
tie @OG 'Tie::File', '/etc/logfile’;
sub log {
push @ QG

@;
ny $overflow = @OG - 100;
splice @OG O, $0verfIOW|f $overflow > 0;

Next BT

Copyright © 2003 M. J. Domint

Next Lightweight Databases 61

Next Lightweight Databases 62

Most Important Thing to Know About Tie::File
® |t's for convenience, not performance
® | worked hard to make it reasonably fast

® But there’s only so much that can be done

$FILE[O] =~ s/"x//;
® This is always going to have to read and rewrite the entire file
® Tie:: Fi |l e must perform reasonably well for many different types of applicatic

O This means it's slower than code custom-written for a single application

General codeisslower than special code

® For example:
sub uppercase_usernane {
ny ($file, $usernane) = @;
for (@file) {
last if s/~$usernane:/\ Uusernane:/;
}
}
® This builds and maintains an offset table in case you visit any of the early rec
again
e |f you don't, the time spent is wasted

® The first version ofipper case_user nane didn’t have to do that

Next 7}@ A Copyright © 2003 M. J. Domint

Next b7 Copyright © 2003 M. J. Domint
Next Lightweight Databases 63 Next Lightweight Databases 64
Indexingwith Tie::File Caching

® You can use an in-memory hash as an index imca: Fi | e file
® Here,% ndex maps usernames to record numbers:
ny % ndex;

ny $NEXT_UNREAD = 0;
sub find_user

ny ($file, $user) = @;
ny $rec;
until (exists $index{S$user}) {

$rec = $fil e->[SNEXT_UNREAD ;
return unl ess defined $rec;
ny ($u) = unpack "A8", $rec;
$i ndex{ $u} = $NEXT_UNREAD,
$NEXT_UNREAD++;

}
return unpack "A8 A5 Al13 A20 A18", $file->[$index{$user}];

® Each time this is called, it checks the index for the user you asked for
O If the user is there, it us&@se: : Fi | e to retrieve the data quickly

O If not, it scans the file until it finds what you wanted

Copyright © 2003 M. J. Domint

Next %Q 7

® Tie:: Fil e also maintains an internedad cache

® [f you try to read the same record twice, it comes from the read cache

sub _fetch {
ny ($self, $n) = @;

check the record cache

{ ny $cached = $sel f->{cache}- >l ookup($n);
return $cached if defined $cached;

$éél f->{cache}->insert($n, $rec)
if defined $rec & not $sel f->{flushing};
$rec;

}
® This is supposed to cut down on I/O
® You can limit the amount of memory used for the cache:

tie @ILE, '"Tie::File', $nyfile, nenory => 200000000;

® Default: 2 MiB

Next HR7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 65 Next Lightweight Databases 66

Tie:: Fil e Modification

$FILE[$n] =~ s/this/that/;

Caching

® Donald E. Knuth, a famous wizard, is fond of saying

o _ o TieF .
Premature optimization is the root of all evi Tie: :Fil e knows how long each record is

@ |f you replace a record with one of the same length, it overwrites in place
o |f the lengths differ, it must rewrite the tail of the file
O It uses a block copy algorithm for this

® The cache is a good example of this

) ® Truncating the file is easy:
® Many common uses df e: : Fi | e have a very low (or zero) cache hit rate

$H#FILE = 12;
for (@ILE) { s/.../1...1}

unshift @1LE items...: ® This locates the end of record 12 (if necessary) and truncates the file accordil
® As a result, the cache just slows things down ® The general problem is very complicated and interesting
® The next release af e: : Fi | e will leave the cache disabled by default O New improvements are always coming

O It will enable the cache only if it believes this will help performance

Next b7 Copyright © 2003 M. J. Domint
Next L7 Copyright © 2003 M. J. Domint
Next Lightweight Databases 67 Next Lightweight Databases 68
Immediate vs. Deferred Writing Deferred Writing
® By default, changes to the array are propagated to the file immediately o |f performance is more important than immediate writing, you may disable it:
O This is calledmmediate writing ny $f_obj = tied(@ILE);
® |n some cases, this will be intolerably slow: $f_obj - >defer;
for (@ILE) {
for (@ILE) { s/™>> [
sIn>> [}

}

® This modifies record 0, rewriting 0 .. 1000

$f _obj - >f | ush;

® All writing is done in memory until you call>f | ush

O Then it modifies record 1, rewriting 1 .. 1000 . i I
9 O (Or until the memory limit you specified is exceeded.)

O Then it modifies record 2, rewriting 2 .. 1000 L .
9 O Then all the writing is done in one batch

O This is intolerably slow tie @ILE, 'Tie::File, $nyfile, dw_size => 500000;

® Default: Whatever theerory limit is

Next </>Q 7 Copyright © 2003 M. J. Domint

Next <f>Q 7 Copyright © 2003 M. J. Domint

Next Lightweight Databases 69 Next Lightweight Databases 70
Autodeferring Miscellaneous Features
for (@ILE) { ® Read-only mode:
s/n>> [
} use Fentl * O RDONLY ;
tie @ILE, 'Tie::File, $nyfile, node => O RDONLY;

® Loops like this are common

® Tie:: Fil e detects these and enables deferred writingmatically

® Change the record separator string:

tie @ILE, 'Tie::File, $nyfile, recsep =>";;";
® Then disables it again when you're done .)
® Tie an open filehandle:
® Unless you don't want that:)))
tie @ILE, 'Tie::File', *STDIN, node => O RDONLY;
tie ILE, "Tie::File', $nyfile, autodefer => 0; "
@ w ® Lock the file:
use Fcntl ' :flock’;
4 (tied @l LE)->fl ock(LOCK_EX);
Next LQ 7 Copyright © 2003 M. J. Domint
® (Locking is another advantage o\ Fi | e)
Next <,/>Q 7 Copyright © 2003 M. J. Domint
Next Lightweight Databases 71 Next Lightweight Databases 72
DBM DBM

® Perl'sti e feature is a generalization DBM files
O (DBM is short forData Base Manager, | think)

® Basic idea: A Perl data structure is backed by a disk file
O Reading the data structures reads the file
O Modifying the data structures writes the file

® This first appeared in perl 3

dbrmopen Y% ash, $fil enane, $perni ssions;

dbntl ose %hash;

Next YR

Copyright © 2003 M. J. Domint

dbropen % ash, $filenane, $perm ssions;
® There are several different libraries than can handle this association
® Which one didibrmopen use?
O Whichever one was compiled into Perl
O If you want to copy data from aiBMfile into ancoBMfile, too bad
® This was one of the major motivations for the Perl 5 module system
® New syntax:
tie Y%ash, 'Package', ARGS...;
® ThePackage is @ module responsible for implementing the association
® dbnopen Y%ash, $fileis now emulated as
tie Y%ash, 'AnyDBM File’;

® AnyDBM Fi | e tries several popular modules until it finds one that works

Next </>Q z

Copyright © 2003 M. J. Domint

Next Lightweight Databases 73

Next Lightweight Databases 74

Common DBM Implementations

® There are five widely-used DBM libraries
O ODBM Fi | e uses the original DBM library, calléd bdom(1979)
O NDBM Fi | e uses an improved version callecbndbm (1985)
O GDBM Fi | e uses the GNU project libraryi bgdbm(19907?)
O SDBM Fi | e uses a new version calledbsdbm(1991)
O DB_Fi | e uses the Berkeley DB library bdb (1993)

® When you build Perl, it looks for each of these
O It constructs and installs thée modules for the ones you have

O Exception: Perl comes with bsdbm so youalways havesSDBM Fi | e

Next 7>Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 75

What DBM Does
® DBM libraries store data in a hashed database
® |t's like a Perl hash, but on the disk
® Advantage over plain text files:
O Lookup is very fast
O (Insertion is much less fast because data might have to be moved aroun:
® Disadvantage:

O The file is full of binary gibberish

Next YR

Copyright © 2003 M. J. Domint

Next Lightweight Databases 76

What DBM Does

® DBM libraries provide functions for storing, fetching, and generating lists of ke

® Theti e modules provide a glue layer between these libraries and Perl

MODULE = SDBM Fil e PACKAGE = SDBM Fil e PREFI X = sdbm_
#defi ne sdbm FETCH(db, key) sdbm f et ch(db->dbp, key)

® These libraries are an attempt to keep a hash on the disk
O Just adi e: : Fi | e is an attempt to keep an array on the disk

O AswithTie:: File, there are a lot of interesting tradeoffs to be made

Next YR

Copyright © 2003 M. J. Domint

Small DBMs: coBM, NDBM, and SDBM
® These all have the same major drawback:
® The amount of data is limited

® Typically, key size + value size must be less than about 1KB for each key

use Fcntl 'O RDWR, 'O CREAT;
use SDBM Fil e;
tie %, "SDBM File", "/tnp/sdbnt, O RDWR O CREAT, 0666
or die $!;
$h{ouch} = "-" x 1024,
print "ok\n";
® Nope:

sdbm store returned -1, errno 22, key "ouch" at sdbmfail |ine

Next 7>Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 77 Next Lightweight Databases 78

Small DBM's; coBM, NDBM, and SDBM GDBM

) ° .
® Another problem is that these databasesspesese storage coBMdoes not have these data size problems

. - ’ ° i i
® The hash isn't represented very efficiently on the disk lusedto use itall the time

Keys File extent Space used ® Now | don't; here's why
(I's -1) (I's -s) N
® |n 1998 | was using it for a web user database for a ma|

1 1024 8 client
2 2048 8
4 4096 8
8 8192 48 O The key was the user name and the value was the
16 120832 120 user’s information
32 245760 208
64 441344 296 i
128 4951648 256 ® We had about 320,000 registered users
256 12701696 1456)
512 21091328 2320 ® One day, thei r st key andnext key routines stopped
1024 33284096 4128 producing all the keys

2048 536668160 11592
4096 1065409536 22272
O They would generate about 1,700 of the username

® Even though we're not storing that much data, the file extents get huge then stop
® Many systems can’t handle a file with an extent greater than 2GiB. O I couldn't get the list of our users!

® On these systems;, N SDBMare severely limited in the amount of data they car
store

® (This output produced bytbm test . pl in your handout)

Next </>Q 7 Copyright © 2003 M. J. Domint
Next </>Q 7 Copyright © 2003 M. J. Domint
Next Lightweight Databases 79 Next Lightweight Databases 80
GDBM DB File
® | sent a detailed bug report to the GNU folks, offering to do whatever | could t ® The best choice
® The reply said: ® Berkeley DB was good ten years ago and it has gotten better
| have heard of this happening before. | was not able to ® Basic usage is very simple:
find out why. Do you have a backup of earlier versions so
you can get nost of your keys out? |If so, you might try to use DB File:
recover by noving to DB-2.? routines. They are still being =)

updated an devel oped. gdbm has not had any active tie %ash, "DB File’, S$file or die...;

devel opnent in years. .
vel op ny ® Optional arguments:

® So | restored what | could from the backup tapes)) :

tie Y%ash, 'DB_File, $file, O RDONLY;
® | switched to Berkeley DB tie %ash, 'DB_File, $file, O CREAT | O RDWR
® | have not usedpBMSsince tie %ash, 'DB File, $file, O CREAT | O_RDWR, 0666;

® Now usevhash just like any other hash

Next <f>Q 7 Copyright © 2003 M. J. Domint
Next b7 Copyright © 2003 M. J. Domint

Next Lightweight Databases 81

Next Lightweight Databases 82

Indexing Revisited
® Here’s a hybrid approach to indexing
® The bulk of the data will be in a plain text file
® But the plain text file takes too long to search
® So we'll also have a DBM file that records record byte offsets
® Then we can locate records quickly

® Complete example code isiindexed. pl

Next %Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 83

Indexing Revisited

® Searching will be fast:

sub find {
nmy ($fh, $dbm S$key) = @;
ny $of fset = $dbm >{$key};

seek $fh, $offset,
ny $rec = <$f h>;
return $rec;

}

® $f his a filehandle on the (plain text) data file

SEEK_SET;

® s$dbmis a reference to the DBM hash with the offset information
® skey is the key we want to look up

® We get the offset information from the DBM hash

® Seek the filehandle to the right position in the text file

® Read the right record instantly

Next i&Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 84

Indexing Revisited
® Where did the offset information come from?

sub make_i ndex {
ny ($fh, $dbm $key_function) = @;
seek $fh, 0, SEEK_SET;
v&dbm = ();
ny $pos = 0O;
while (<$fh>) {
chonp;
ny $key = $key_function->($_);
$dbm >{ $key} = $pos;
$pos = tell $fh;
}
}

® $fh andsdbmare as before
® s$key_function takes a record from the file and says what the key should be

o |f the DBM eats the index, your homework is still intact

Next 7>Q 7

Copyright © 2003 M. J. Domint

Indexing Revisited
® A typical use:

use DB_File;
tie Y%y_nane,

or die $!;
open PASSWD, "<,

"DB_File', "./pw_aux", O CREAT| O RDVMR 0666

"/ etc/passwd" or die $!;
nmake_i ndex(\ * PASSWD, _
sub { (split /:/,

\ %y_nane,
$_[0], 2)[0] },

® The key function here takes a password file line and extracts the username
® We only need to calteke_i ndex once
O (Until the password file changes)
® After that, we can get as many fast lookups as we want:
print find(*PASSWD,

\ %y_name, "nmjd");

nj d: x: 119: 100: Mark Jason Domi nus: / home/ nj d: / bi n/ bash

Next 7>Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 85

Next Lightweight Databases 86

Indexing Revisited
® We can also build multiple indices:

open PASSWD, "<", "/etc/passwd" or die $!;

tie %y_nane, 'DB_File , "./pw_ aux", O_CRiEAT| O _RDWR, 0666
or die $!;

tie by uid, 'DB File, "./pw.uid', O CREAT|O RDWR 0666
or die $!;

nmeke_i ndex(\ * PASSWD, \ %y _nane,
sub { (split /:/, $_[0], 2)[0] },

nmeke_i ndex(\ * PASSWD, \ %y _uid,

sub { (split /:/, $_[0], 3)[1] },
print find(*PASSWD,
print find(*PASSWD,

\%y_name, 'nmd);
\%y_uid, 119);

® (All this also works with untied hashes)

Next %Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 87

Ordered Hashes

® DB_Fi | e actually supports three different file types

tie %hash, ’'DB_File', $file, O CREAT|O RDWR 0666, $DB HASH;
tie Yhash, 'DB_File', $file, O CREAT|O RDAR 0666, $DB BTREE;
tie @rray, 'DB File', $file, OCREAT|O RDWR 0666, $DB_RECNG

® The default iDB_HASH which we've seen already
® DB_RECNOassociates a plain text file with an array
O ButTie:: Fi | e may be preferable, for a number of reasons
O (See the handout)
® DB _BTREE uses a different data structure calleBHaee
O Also called aVSAM file by big-iron types
O Unlike a hash, it keeps the recordsrder

O For very large databases (1,000,000 records) lookup may be slower thar

Next he7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 88

Ordered Hashes

tie %ash, 'DB File', $file, O CREAT| O RDMR 0666, $DB_BTREE;

® By default, the ordering is lexicographic:

for (gw(red orange yellow green blue violet)) {
$hash{$_} = length;

print join(" ", keys %ash), "\n";
bl ue green orange red violet yellow

® You may specify an alternative ordering:
use DB File;

ny $rev_btree = DB_Fil e:: BTREEI NFO >new() ;
$rev_btree->{conpare} =

sub {
ny ($a, $h) = @;
reverse($a) cnp reverse($b)

tie Y%ash, 'DB File', $file, O CREAT| O RDWR 0666, $rev_btree;

red orange blue green violet yellow

Next 7>Q 7

Copyright © 2003 M. J. Domint

Partial Matching

bl ue 4
green 5
orange 6
red 3
violet 6
yellow 5

® Because the keys in a B-tree are in order, you can do limited partial matching
® As with Sear ch: : Di ct, you can look for the first key that begins with some stri
ny $db = tied Y%ash;

my $;
$db- >seq($k, $v, R _CURSOR);
print "$k => $v\in";

green 5
® Actually it produces the first key that is greater than or equiK to

O Under the appropriate comparison

@ |f there is no such kegk is unchangedsv isundef , andseq returnstrue

Next 7>Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 89

Next Lightweight Databases 90

Sequential Access

® ->seq provides generic sequential access to the keys
O In the user-defined order

® Note: C-stylef or loops coming up

® To scan the keys forwards:

ny $db = tied Y%ash;
ny ($k, $v, $fail);

Filters

® Suppose you want to store complex data structuresgnri | e
® This doesn’t work:

$hash{nunbers} =1[1, 4, 2, 8, 5, 7];
® The array is converted to a string, anddiing is stored:

print $hash{numbers}, "\n";

ARRAY(0x8118d9c)

for ($fail = $db->seq($k, $v, R FIRST) ; $aref = $hash{nunbers};
! $fail print "@aref\n";
$fail = $db->seq($k, $v, R _NEXT) ’
) { N B Can't use string ("ARRAY(0x8118d9c)") as an ARRAY ref
print "$k => $vin"; while "strict refs" in use...
® Thisi . .
© Or backwards: This is a drawback of all DBM implementations
for ($fail = $db->seq($k, $v, R LAST); O And indeed of the Unix operating system
I $fail;
$fail = $db->seq($k, $v, R _PREV) O There's no OS support for storing anything except a lifeless byte sequen
)
print "$k => $v\n";
® Or just the keys betweera ands$b: Next i&Q VA Copyright © 2003 M. J. Domint
$k = $a;
for ($fail = $db->seq($k, $v, R CURSOR);
I $fail & $k le $b;
$fail = $db->seq($k, $v, R _NEXT)
) {
print "$k => $v\n";
Next b7 Copyright © 2003 M. J. Domint
Next Lightweight Databases 91 Next Lightweight Databases 92
Filters Ber kel eyDB

® We could use a serialization module |iter abl e
O It will convert arbitrary values to strings, and back:

use Storable;
$hash{nunbers} = freeze [1, 4, 2, 8, 5, 7];

$aref = thaw $hash{nunbers};
print "@aref\n";

142857
® This is kind of a pain
® DB_Fi |l e will do it automatically:

ny $db = tied Y%ash;
$db->filter_store_val ue(sub {

$_ = Storable::freeze($) });
$db->filter_fetch_value(sub { $_

Storable::thaw($_) });

® Now this works:
$hash{nunmbers} = [1, 4, 2, 8, 5 7];
$aref = $hash{nunbers};
print "@aref\n";

® freeze andt haware called automatically
O Note that the filters usg_for input and output

® Similarly,filter_store_key andfilter_fetch_key

Next %Q 7

Copyright © 2003 M. J. Domint

® The Berkeley DB library has many other fascinating features

O Not all are available throughB_Fi | e
® For example, there istB_Queue file type

O This is like an array

O But it is optimized fopush andshi f t operations

O You might use this to store a log file

O When the log file exceeds a certain size, you shift the old records off the
® There is an option to keep the values for duplicate keys in a user-defined ord
® [t supports transactions
® TheBer kel eyDB module provides interfaces to this functionality
® |t's worth skimming through the manual

® Check ouhttp: //wwmv. sl eepycat . comf docs/ reftoc. htnl for a tutorial and
overview

Next Q7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 93 Next Lightweight Databases 94
Thank Y ou! Bonus Slides
® Any questions? ® Classes change from year to year
® Some things move in, others come out
Next “& 7 Copyright © 2003 M. J. Domint ® There’s never enough time to cover all the material I'd like to

Next Lightweight Databases 95

® But you may as well see the deleted slides

Next %Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 96

Tie:: File Internals
® Inside,Ti e: : Fi | e uses a combination of several of the techniques we've seer
® |t maintains an offset table internally
$z = $FILE[57];
® This checks the offsets table fiwf f set s[57]

O Ifit's already presentTi e: : Fi | e seeks to the right location and reads the
record

O If not, Ti e: : Fi | e scans from the last known position up to line 57

sub _fetch {
ny ($self, $n) = @;

if ($#{$self->{of fsets}} < $n) {
return if $self->{eof};
ny $o = $self-> fill_offsets_to($n);
If it's still undefined, there is no such record,
so return 'undef’
return unl ess defined $o;

}

ny $fh = $sel f->{FH};

we can do this now that offsets is popul ated
$sel f->_seek($n);

ny $rec = $self-> read_record;

$rec;

Next YR

Copyright © 2003 M. J. Domint

Multiple Values
® Unlike a hash, a B-tree may store more than one value per key

® To enable this, use DUP:

ny $dup_btree = DB_Fil e:: BTREEI NFO >new() ;
$dup_btree->{fl ags} = R DUP;
tie Y%ash, 'DB File', $file, O CREAT| O RDWR 0666, $dup_btree;
while (<FRUITS>) {

ny ($color, $fruit) =split / /, $_, 2;

$hash{$color} = $fruit;
}

® Ordinary hash assignment actually stores the new vakdglition to the old one
® Hash retrieval recovers only tfiest stored value

® But->seq will recoverall the values:

$k = "red";

for ($fail = $db->seq($k, $v, R _CURSOR);
! $fail & $k eq "red";
$fail = $db->seq($k, $v, R NEXT)) {

print "$k: $vin";

red: apple
red: cherry
red: strawberry
red: raspberry

Next %Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 97

Next Lightweight Databases 98

Multiple Values
® For a user-defined comparison, 'identical’ keys might not be exactly the same

® Suppose the comparison is case-insensitive:

ny $ny_btree = DB _Fil e:: BTREEI NFO >new() ;

$ny_btree->{flags} = R DUP;

$ny_btree->{conpare} = sub { Ic $_[0] cnp lc $_[1] };

tie Y%ash, "'DB File, $file, O CREAT| O RDWR 0666, $my_btree;

® ThenRed, r ed, andRED are all considered 'the same’

for (['Red, 'apple'], ['red, 'cherry'],
'RED', 'strawberry'], ['blUe', 'grape']) {
ny ($key, $value) = @_;

$hash{ $key} = $val ue;

® Only the first of these three is actually stored

® The hash interface will report the duplicate keys:
print join(" ", keys %ash), "\n";
bl Ue Red Red Red

Next 7>Q 7

Copyright © 2003 M. J. Domint

Next Lightweight Databases 99

Multiple Values
® There are some special methods for dealing with duplicate keys
® This recovers a list of the values associated with the given key:
@ = $db- >get _dup($Key);
® This is a count of the number of appearances of the key:
$n = $db- >get _dup($Key);
® You can checks to see if the key is associated with a certain value

O If the pair is found, this returrfalse and positions the cursor at the specifie
pair

$failed = $db->fi nd_dup($Key, $Val ue);

You can then iterate over preceding or following key-value pairs-withq

You can delete just one key-value pair:
$failed = $db->del _dup($Key, $Val ue);

® This returndalse on success

Next %Q 7

Copyright © 2003 M. J. Domint

Multiple Values

$ny_btree->{conpare} = sub { lc $_[0] cnp lc $_[1] };

%hash = (Red => "apple’, RED => 'strawberry’,

bl Ue => 'grape');

red => 'cherry’,

® Since the keys are insensitive, the hash interface can’t distinguish them:
print "$hash{bl Ue} $hash{red} $hash{Red} $hash{RED}\n";
grape appl e apple apple

® But->seq can recover the values:
ny $db = tied Y%ash;

$k = $START = 'red’ ;
for ($fail = $db->seq($k, $v, R CURSOR);

I $fail;
$fail

= $db->seq($k, $v, R_NEXT)) {
print "$k: $vin";

Red: apple
Red: cherry
Red: strawberry

Next 7>Q 7

Copyright © 2003 M. J. Domint

