NAME

cf-demo - demonstration of continued fraction library

SYNOPSIS

```
cf-demo e  # calculate decimal expansion of e  
cf-demo x  # calculate expansion of real  
cf-demo n  # calculate expansion of n/d  
cf-demo a  b  c  d  x  # calculate expansion of (ax+b)/(cd+x)  
cf-demo a  b  c  d  e  f  h  x  y  # calculate expansion of (axy+bx+cy+d)/(exy+fx+gy+h)  
cf-demo x+y  # calculate expansion of x+y  
cf-demo x^*y  # calculate expansion of x^*y  
cf-demo x^*y  # calculate expansion of x^*y
```

DESCRIPTION

cf-demo is a demonstration program for the continued-fraction calculation library. **demo** can be invoked in several ways to exercise the various features of **cf**.

demo n d

calculates and prints the continued-fraction expansion of the rational number n/d where n and d are integers. The **cf** function $new_rat()$ is used to manufacture the continued-fraction object, and then $print\ cf()$ is used to print the terms of the continued fraction.

demo x

uses $new_rat_from_float()$ to build a continued fraction with the value of x, which is a floating-point number in the usual format. The terms of the continued fraction are then printed.

demo a b c d x

first uses $new_rat_from_float()$ to convert x to a continued fraction, and then $new_holo()$ to calculate a continued-fraction expansion for the value ax+b / cx+d. The terms of this latter continued fraction are then printed. x should be in floating-point format; a, b, c, and d should be integers.

demo a b c d e f g h x y

uses $new_rat_from_float()$ to convert x and y to continued fractions, and then $new_arith()$ to calculate a continued-fraction expansion for the value axy+bx+cy+d / exy+fx+gy+h. The terms of this latter continued fraction are then printed. x and y should be in floating-point format; a, b, c, d, e, f, g, and h should be integers.

```
demo x + y
demo x - y
demo x * y
demo x / y
```

x and y are real numbers in floating-point format. $new_rat_from_float()$ is called to convert them to continued-fraction representation, and then $new_arith()$ is used to perform the indicated operation (addition, subtraction, multiplication, or division) is performed on the two values. The terms of the result then printed.

Note that '*' is special in the shell and will need to be quoted. The program will accept the letter "x" as a synonym.

$\mathbf{demo}\ \mathbf{e}$

This calculates and prints the decimal value of e (2.71818...) from the continued fraction representation. Specifically, the continued fraction [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, ...] is contstructed, and then $new_dec()$ is used to convert it to a decimal.

demo '->d' x

x is a real number as above. The real number is converted to a continued fraction, using $new_rat_from_float()$. The continued fraction is then converted back to a sequence of decimal digits, using $new_dec()$, and the decimal digits are displayed.

AUTHOR

Mark Jason Dominus (mjd@plover.com)