
Next Making Programs Faster 1

Making Programs Faster

Benchmarking, Performance Tuning, and Caching

Mark Jason Dominus

Plover Systems Co.

 mjd-tpc-perf+@plover.com

v1.2 (May, 2003)

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 2

Making Programs Faster
What we’ll do:

Basic concepts, example optimizations

Using profiling tools

Mail folder analyzer

perldoc

Blunders

Along the way:

Building custom profiling tools

What not to worry about

More blunders

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 3

Performance Tuning is Hard
You want your program to be faster

So you guess what it might be spending a lot of time on

Then you guess that a different design will spend less time

Then you implement your guess

Then you find out that you were wrong

There are no experts here

Everyone guesses wrong

Guessing doesn’t work

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 4

Performance Tuning is Hard
With some things, a seat-of-the-pants approach works fine

Not performance tuning

You must be scientific and methodical

It’s easy to mess up

This class is about tools and measurement

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 5

Schwartzian Transform
Sort list of items by some non-apparent
feature

Example: Sort filenames by last-modified
date

The obvious method:

 sort { -M $b <=> -M $a }
 (readdir D);

It calls -M over and over on the same files

Idea: Maybe we can speed this up as
follows:

1. Construct data structure with both
names and dates

2. Sort by date

3. Throw away dates

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 6

Schwartzian Transform
 @names = readdir D;

 @names_and_dates =
 map { { NAME => $_, DATE => -M $_ } }
 @names;

 @sorted_names_and_dates =
 sort { $b->{DATE} <=> $a->{DATE} }
 @names_and_dates;

 @sorted_names =
 map { $_->{NAME} }
 @sorted_names_and_dates;

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 7

Schwartzian Transform
 @sorted_names =
 map { $_->[0] }
 sort { $b->[1] <=> $a->[1] }
 map { [$_, -M $_] }
 readdir D;

This is more complicated and more work than the original code:

 sort { -M $b <=> -M $a } readdir D;

Is it really faster?

To find out, we run both versions on the same data

We measure the time taken by each one

This is called a benchmark

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 8

Schwartzian Transform
On a sample of 11,632 files:

 User Sys Total
 Direct 0.80 2.55 3.35
 Schwartzian 1.14 0.39 1.53

This says that the Schwartzian version was indeed about 54% faster for this example

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 9

Time
The computer has several kinds of time

Wallclock time is actual elapsed time

On a timesharing system, this is rarely the amount of time the process actually
spent working

It shares the processor with the OS and with other processes

Of the wallclock time, some was spent executing instructions in the process’s
program

For example, copying data around or doing tests

This is the user time

Some time was spent by the OS executing OS instructions at the program’s request

For example, fetching mtimes, performing I/O, and allocating memory

This is the system time

user time + system time = CPU time <= wallclock time

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 10

user time + system time = CPU time

Before

 sort { -M $b <=> -M $a } readdir D;

After

 @sorted_names =
 map { $_->[0] }
 sort { $b->[1] <=> $a->[1] }
 map { [$_, -M $_] }
 readdir D;

-M and readdir consume mostly system time

Everything else is pure user time

The goal of the Schwartzian Transform is to reduce the number of -M’s

But optimization is always a tradeoff

The cost is a lot more user-mode processing

We see this in the timing outputs

 User Sys Total
 Direct 0.80 2.55 3.35
 Schwartzian 1.14 0.39 1.53

The Schwartzian transform does 43% more processing

But it wins by asking the kernel for 84% less service

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 11

"Optimizations"
The world is full of dumbassed ’optimizations’ and ’benchmarks’

We’ll see several today

Here’s one I found while researching the Schwartzian Transform

The goal here is to do a case-insensitive sort

 sort { lc $a cmp lc $b } @stuff;

Here’s what was suggested:

 Date: Sat, 15 Mar 1997 00:55:47 GMT
 Subject: Re: Sorting help
 Message-Id: <3329eefd.140372364@news.oz.net>

 # The *drum roll* Schwartzian Transform!
 @sorted = map {$_->[0]}
 sort {$a->[1] cmp $b->[1]}
 map {[$_, lc $_]}
 @stuff;

Boldface code is operations that were added

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 12

"Optimizations"
 @sorted = map {$_->[0]}
 sort {$a->[1] cmp $b->[1]}
 map {[$_, lc $_]}
 @stuff;

Here are the benchmark results on a list of 11,632 strings:

 User Sys Total
 Direct 0.23 0.00 0.23
 Schwartzian 0.85 0.08 0.93

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 13

"But I want a pony!"
 User Sys Total
 Direct 0.23 0.00 0.23
 Schwartzian 0.85 0.08 0.93

Performance tuning is always a tradeoff

Never say "I’ll use the Schwartzian Transform because it’s faster"

That’s an immature view of value

That’s what little kids are thinking when they say

Dad, can I have a pony?

The poor little kid sees the benefit, but not the cost

Always remember to ask

What am I spending and what am I getting in
return?

Unfortunately, the cost-benefit ratio for the pony is prohibitively large

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 14

"Optimizations"
 sort { lc $a cmp lc $b } @stuff;

 @sorted = map {$_->[0]}
 sort {$a->[1] cmp $b->[1]}
 map {[$_, lc $_]}
 @stuff;

The ’benefit’ here was to reduce the number of lc operations

The cost was to introduce array reference lookup operations in their place

And two extra scans over the list

And some memory allocation

But he got his pony!

More ponies later

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 15

Wallclock Time
Wallclock time is the most natural
way to measure performance

Because you want the program to
finish sooner rather than later

But measuring wallclock time
directly is very tricky

Operating systems like Unix
and Windows do pre-emptive
multitasking

At any moment the OS might
put any process to sleep for a long time

Processes go to sleep when the OS wants to do something else

Sleeping processes consume wallclock time but not CPU time

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 16

Wallclock Time
If a program needs to do a certain amount of computation, that consumes a certain
amount of CPU time

The amount of CPU time will probably not vary too much for a particular task

However, wallclock measurements can vary a lot from one run to another

It all depends on what else is going on at the same time

The amount of wallclock time might vary enormously

Variations might be unrelated to the program you are examining

For this reason we tend to concentrate on measuring CPU, which is easier

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 17

Wallclock Time
Unfortunately, measuring CPU isn’t always what you want

Consider a program with high wallclock time but low CPU time

This program is spending a lot of time waiting around

That may be unavoidable

Reducing the CPU usage of this program may not reduce its wallclock usage
proportionally

It may be computing faster but spending the same amount of time waiting
around

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 18

Wallclock Time
 # usage: webgrep PATTERN urls...
 use LWP::Simple ’get’;
 my $pat = shift;
 my @contexts;
 for my $url (@ARGV) {
 my $doc = get($url);
 unless (defined $doc) {
 warn "Couldn’t fetch $doc; skipping\n";
 next;
 }

 while ($doc =~ m/$pat/oig) {
 push @contexts, substr($doc, pos($doc) - 30, 60);
 }
 }
 print join("\n--------\n", @contexts), "\n";

This program’s wallclock time is dominated by the call to get

get spends most of its time waiting for messages to travel across the network

We say that the program is I/O bound

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 19

I/O Bound Programs
To speed up webgrep, we would need to address the network latency time

It is unlikely that altering the search itself will produce much of an effect

The benchmarks bear this out:

 % ./webgrep perl http://www.perl.com/

 real 0m3.456s
 user 0m0.720s
 sys 0m0.070s

CPU time accounted for only about 23% in this simple case

 % ./webgrep perl http://www.perl.com/ http://www.perl.com/ \
 http://www.perl.com/ http://www.perl.com/ \
 http://www.perl.com/ http://www.perl.com/

 real 0m15.599s
 user 0m0.840s
 sys 0m0.110s

6% in this case

Trying to speed up an I/O bound program by reducing the amount of computation
won’t work

Alternative:

Parallelize I/O (asynchronous I/O; move it to subprocesses, etc.)

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 20

I/O Bound Programs
CGI application performance is another great example of this

When the user submits a form, the following happens:

1. The browser sets up a TCP connection to the server

2. It sends the form contents

3. The server starts a new CGI process

4. The process loads the CGI program and compiles it

5. The CGI program runs

6. The server gathers the CGI output and constructs a response

7. It sends the response to the browser

8. The connection is torn down

9. The browser renders and displays the results

All this typically takes a couple of seconds

Speeding up the CGI program itself only speeds up step 5

This probably has a minimal effect on the user’s experience

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 21

CPU Bound Programs
In contrast, consider this program:

 for my $i (1 .. 100000) {
 my $n = $i / 100;
 my $s = square_root($n);
 }

 sub square_root {
 my $tolerance = 0.000001;
 my $g = my $n = shift;
 while (abs($g * $g - $n) >= $tolerance) {
 $g = ($n/$g + $g)/2;
 }
 $g;
 }

 real 0m10.211s
 user 0m9.570s
 sys 0m0.010s

This program spent 94% of its life using the CPU

Reducing the amount of computation by even 10% is likely to have a
significant effect on the wallclock time

We say such a program is CPU bound

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 22

Memory Bound Programs
Some programs do relatively little computation or I/O but are slow anyway

Consider this simple program:

 print sort <>;

Theoretically, the sort runs in O(n log n) time, on average

That means that if the input size doubles, the run time should be a little more
than twice as long

From this we might extrapolate that 2048000 items will take about 283 seconds

Actually it took 14,601 seconds

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 23

Memory Bound Programs

What happened here?

1024000 items fit into real memory; 2048000 didn’t

The OS had to start swapping pages to disk

Program run time was dominated by the swapping time

For large input lists, this program is memory bound

Its slowness is caused not by excessive computation but by excessive memory
usage

Performance will be most improved by reducing memory usage

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 24

Simple Measurement Tools
Most Unix systems come with a command called time

For quick estimates of entire programs, the time command is handy

 % time ls
 #BIGMESS# PENN YAPC_16.jpg gym photos
 ...
 real 0m0.858s
 user 0m0.130s
 sys 0m0.230s

Often this is built into the shell; the time program is different:

 % /usr/bin/time ls
 #BIGMESS# PENN YAPC_16.jpg gym photos
 ...
 0.13user 0.23system 0:00.86elapsed 41%CPU
 (0avgtext+0avgdata 0maxresident)k
 0inputs+0outputs (130major+24minor)pagefaults 0swaps

41%CPU here is the CPU utilization

It’s just CPU time divided by wallclock time

Most of the other information is provided by the getrusage system call

Not all systems provide all the possible information

Hence the 0outputs result on my system

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 25

time()

Wallclock time is measured by Perl’s built-in time() function:

 use LWP::Simple ’get’;
 my $url= shift;
 my $start = time();
 my $doc = get($url);
 my $elapsed = time() - $start;
 print "$elapsed second(s) elapsed.\n";

 2 second(s) elapsed.

It returns the amount of time that has elapsed since the beginning of 1970

By default, the resolution of time is only one second

Related: $^T variable contains the time at which the program started

 print "Program has been running for ",
 time() - $^T, " second(s).\n";

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 26

Time::HiRes

Since 5.7.2, Perl has come with the Time::HiRes module

Time::HiRes overloads time and sleep to have finer resolution

 use LWP::Simple ’get’;
 use Time::HiRes ’time’;
 my $url= shift;
 my $start = time();
 my $doc = get($url);
 my $elapsed = time() - $start;
 print "$elapsed second(s) elapsed.\n";

 1.49982798099518 second(s) elapsed.

Time::HiRes is also available from CPAN

It also provides high-resolution versions of sleep and alarm

Also other high-resolution time-related functions

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 27

times()

CPU time is measured with the built-in times() function

 ($u, $s, $cu, $cs) = times();

$u and $s are the user and system CPU times consumed by this process

$cu and $cs are the CPU time consumed by descendant processes of this one

(These are unavailable on Windows systems)

 # busyloop
 use Time::HiRes ’time’;
 ($parent_run, $child_run) = @ARGV;
 $start = time;
 until (time >= $start + $parent_run) {
 # Busy loop
 }
 if (fork) { # parent
 wait;
 } else { # child
 $start = time;
 until (time >= $start + $child_run) {
 # Busy loop
 }
 exit;
 }
 printf (<<EOF, times());
 u: %.2f s: %.2f
 cu: %.2f cs: %.2f
 EOF

 % ./busyloop 6 2
 u: 5.11 s: 0.88
 cu: 1.61 cs: 0.40

Most benchmarking tools are based on times

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 28

Simple Benchmarker
 substr($s, 0, 3) = "abc"

 $s =~ s/.../abc/s

Which is faster?

 my $N = shift || 1000000;
 my $s = shift || "The quick brown fox jumps over the lazy dog";

 my ($su, $ss) = times;
 for (1 .. $N) { substr($s, 0, 3) = "abc" }
 my ($eu, $es) = times;
 my ($tu, $ts) = ($eu - $su, $es - $ss);
 my $total = $tu + $ts;
 printf "%20s %5.2f %5.2f %6.2f\n", "substr", $tu, $ts, $total;

 my ($su, $ss) = times;
 for (1 .. $N) { $s =~ s/.../abc/s }
 my ($eu, $es) = times;
 my ($tu, $ts) = ($eu - $su, $es - $ss);
 my $total = $tu + $ts;
 printf "%20s %5.2f %5.2f %6.2f\n", "regex", $tu, $ts, $total;

The output:

 substr 5.04 0.01 5.05
 regex 5.71 0.00 5.71

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 29

Simple Benchmarker
 substr 5.04 0.01 5.05
 regex 5.71 0.00 5.71

Looking at this output, we might conclude that the substr was 11.5% faster than
the regex

But something important is missing from this output

The benchmark apparatus itself is biasing the results

 my ($su, $ss) = times;
 for (1 .. $N) { }
 my ($eu, $es) = times;
 my ($tu, $ts) = ($eu - $su, $es - $ss);
 my $total = $tu + $ts;
 printf "%20s %5.2f %5.2f %6.2f\n", "NULL", $tu, $ts, $total;

Now the output is:

 NULL 1.24 0.00 1.24
 substr 5.10 0.01 5.11
 regex 5.69 0.00 5.69

The time actually spent doing substr was about 3.87 seconds

The time actually spent doing regex was about 4.45 seconds

The substr is actually more like 13% faster

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 30

Benchmark.pm

Perl comes with a benchmarking module called Benchmark

The previous slide’s benchmark looks like this:

 use Benchmark;
 my $N = shift || 1000000;
 my $s = shift || "The quick brown fox jumps over the lazy dog";
 timethese($N,
 { substr => sub { substr($s, 0, 3) = "abc" },
 regex => sub { $s =~ s/.../abc/s },
 });

 regex: 7 wallclock secs
 (7.85 usr + 0.00 sys = 7.85 CPU)
 @ 127388.54/s (n=1000000)
 substr: 7 wallclock secs
 (8.24 usr + 0.00 sys = 8.24 CPU)
 @ 121359.22/s (n=1000000)

Benchmark says that the regex is about 5% faster

It tries to do its own adjustments for error

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 31

Benchmark.pm

I don’t use Benchmark.pm any more

That’s for several reasons

Here’s the results of five consecutive runs of the same benchmark

 regex: (7.79 usr + 0.01 sys = 7.80 CPU)
 substr: (7.34 usr + 0.02 sys = 7.36 CPU)

 regex: (8.02 usr + 0.00 sys = 8.02 CPU)
 substr: (7.04 usr + 0.00 sys = 7.04 CPU)

 regex: (7.95 usr + 0.01 sys = 7.96 CPU)
 substr: (7.63 usr + 0.00 sys = 7.63 CPU)

 regex: (8.28 usr + 0.01 sys = 8.29 CPU)
 substr: (7.40 usr + -0.01 sys = 7.39 CPU)

 regex: (8.04 usr + -0.03 sys = 8.01 CPU)
 substr: (6.92 usr + 0.00 sys = 6.92 CPU)

Problem #1: The individual measurements vary by up to 7%

Problem #2: Some of the tests are running backwards in time

I’ve also seen:

 null: -1 wallclock secs (-0.07 usr + 0.01 sys = -0.06 CPU)
 @ -16666666.67/s (n=1000000)

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 32

Benchmark.pm

Problem #3:

 regex substr
 Benchmark.pm 8.01 7.36
 Handwritten 5.69 5.11

Which one is closer to the truth?

Here are five consecutive runs of the handwritten benchmark:

 NULL 1.23 0.00 1.23
 substr 5.07 0.00 5.07
 regex 5.71 0.00 5.71

 NULL 1.24 0.00 1.24
 substr 5.07 0.00 5.07
 regex 5.69 0.00 5.69

 NULL 1.23 0.00 1.23
 substr 5.07 0.00 5.07
 regex 5.71 0.00 5.71

 NULL 1.23 0.00 1.23
 substr 5.07 0.00 5.07
 regex 5.69 0.00 5.69

 NULL 1.25 0.00 1.25
 substr 5.05 0.00 5.05
 regex 5.68 0.00 5.68

Here the variation is less than 1%

I find that I believe these results more than Benchmark’s

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 33

The Uncertainty Principle
Heisenberg said that it’s impossible to measure
something without altering the measurement

That is certainly true of benchmarking

Every benchmark introduces some bias into the
thing it purports to measure

You can try to minimize this in at least two ways

One way is to make the benchmark
apparatus as simple and as lightweight as
possible

Then the effects will be small

Or, if not, it will be clear what the biases
might be

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 34

The Uncertainty Principle
There’s another way to try to eliminate bias

You can try to correct for it

By adding a lot of complicated machinery to measure bias and subtract it from
the results

This is the Benchmark.pm approach

But if it goes wrong, you have no idea what really happened

 null: -1 wallclock secs
 (-0.07 usr + 0.01 sys = -0.06 CPU)
 @ -16666666.67/s (n=1000000)

Even when it goes right, you have no idea what really happened

"There are two ways of constructing a software
design: One way is to make it so simple that there
are obviously no deficiencies and the other way is
to make it so complicated that there are no obvious

deficiencies."

-- C. A. R. Hoare

These days I always write my benchmarks manually

Or I have Benchmark::Accurate write the script for me

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 35

Performance Tuning Plan
A program is taking too long to run

We want to speed it up

First figure out if it is CPU-bound, memory-bound, or I/O bound

Or possibly some of each

If CPU-bound, use a profiler to find CPU-bound parts of the program

Then think hard about just those parts

Come up with a plausible improvement

Test the ’improved’ version to make sure it does the same thing

Time the ’improved’ version against the original

If the new version is faster, weigh the benefit against the costs

For example, is the code more complicated now?

If so, is it worth it?

Throughout, try to estimate whether it wouldn’t be cheaper in the long run to just
buy more hardware

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 36

Profilers
A profiler divides the program into small chunks (lines or subroutines)

It reports the time taken by each chunk

It tells you which chunks contribute the most run time

Why is this important?

Suppose you have a program that needs to run as fast as possible

You say "Aha! The keyword search function is too slow. I will speed it up."

You get out the benchmarker and get to work

You research more efficient algorithms

You try many different keyword search strategies

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 37

Profilers
All this hard work pays off!

Two weeks later the keyword search is twice as fast

But it turns out that the program was spending only 2% of its time doing keyword
search

So now it is spending only 1% of its time doing keyword search

Two weeks down the drain

This happens to people all the time

Don’t let it happen to you

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 38

Profilers
The profiler will tell you which parts of the program contribute most of the run time

This, in turn, allows you to identify the likely targets for improvement

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 39

Sample Program: Mail Folder Analyzer
I wanted a sample program written by someone else

This one was kindly provided by Mr. Robert Spier

He used it in last year’s optimization tutorial

It’s in mfa1-n.pl

The program analyzes an mbox-format file

 perl mfa1.pl MBOX

The output might look like this:

 Messages : 109
 Total Size : 190790
 Average Size : 1750
 Most Common Characters:
 : 25557
 e : 13719
 o : 9330
 t : 7473
 r : 7460
 Least Common Characters:
 ~ : 18
 # : 14
 \ : 9
 & : 6
 Z : 2
 | : 2
 Most Common Domains:
 plover.com : 52
 upenn.edu : 38
 pobox.com : 19

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 40

Sample Program: Mail Folder Analyzer
Timing:

 real 0m8.356s
 user 0m6.770s
 sys 0m0.030s

Let’s see what we can do about that

Perl comes standard with a module called Devel::DProf

This module records subroutine entry and exit times as the program runs

It leaves behind this trace data in a file called tmon.out

To use it:

 perl -d:DProf mfa1.pl MBOX > /dev/null

Send output to /dev/null to avoid device-related biases

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 41

Devel::DProf

To analyze the tmon.out file, you run dprofpp

It gets a lot of options to control the format of the report it generates

By default it looks like this:

 Total Elapsed Time = 7.592672 Seconds
 User+System Time = 7.122672 Seconds
 Exclusive Times
 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 30.1 2.149 2.125 4104 0.0005 0.0005 Mail::Header::_fold_line
 24.6 1.756 3.414 2052 0.0009 0.0017 Mail::Header::_fmt_line
 12.2 0.870 0.869 109 0.0080 0.0080 main::letter_histogram
 6.60 0.470 0.458 2052 0.0002 0.0002 Mail::Header::_insert
 5.77 0.411 4.275 109 0.0038 0.0392 Mail::Header::extract
 5.34 0.380 0.367 2161 0.0002 0.0002 Mail::Header::_tag_case
 5.34 0.380 0.358 3604 0.0001 0.0001 Mail::Header::fold_length
 3.72 0.265 1.377 109 0.0024 0.0126 Mail::Header::fold
 2.39 0.170 0.170 1 0.1700 0.1700 Mail::Util::read_mbox
 1.40 0.100 5.917 116 0.0009 0.0510 Mail::Internet::BEGIN
 1.40 0.100 0.269 4 0.0250 0.0674 main::BEGIN
 0.70 0.050 0.048 327 0.0002 0.0001 Mail::Internet::body
 0.70 0.050 5.700 109 0.0005 0.0523 Mail::Header::header
 0.56 0.040 0.091 218 0.0002 0.0004 Mail::Internet::as_string
 0.42 0.030 0.030 1 0.0300 0.0300 warnings::BEGIN

This lists the 15 subroutines that consumed the most total CPU time

The top 5 account for 80% of the program’s run time

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 42

The 90-10 Rule
The 90-10 rule says that 10% of the code accounts for 90% of the run time

The other 90% of the code is:

Special cases (executed infrequently)

Initialization code (executed only once per run)

Error handlers (executed never)

More conservative version: The 80-20 rule

I counted the lines to see if this was true

If anything, ’90-10’ may be too conservative

See the Bonus Slides for details

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 43

Devel::DProf

 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 30.1 2.149 2.125 4104 0.0005 0.0005 Mail::Header::_fold_line
 24.6 1.756 3.414 2052 0.0009 0.0017 Mail::Header::_fmt_line
 12.2 0.870 0.869 109 0.0080 0.0080 main::letter_histogram
 6.60 0.470 0.458 2052 0.0002 0.0002 Mail::Header::_insert
 5.77 0.411 4.275 109 0.0038 0.0392 Mail::Header::extract
 ...

About 30% of the program’s total run time was spent inside
Mail::Header::_fold_line

Another 24% was spent in Mail::Header::_fmt_line

8 of the top 15 functions, totaling 82% of the run time, are in Mail::Header

Tentative conclusion: To make this program faster, get rid of Mail::Header

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 44

Mail::Header

Mail::Header is loaded by Mail::Internet

Let’s see where Mail::Internet is used:

 sub handle_message {
 my $message = $_[0];
 my $mi = Mail::Internet->new($message);

 $count++;
 $total_size += length $mi->as_string;
 letter_histogram($mi->as_string);
 from_histogram($mi->head->get("From:"));
 }

It would appear that it is being used to:

1. Convert the message to an object and then back to a string, and

2. to extract the From header

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 45

handle_message

Let’s try doing those things manually instead

 sub handle_message {
 my $message = join "", @{$_[0]};
 my $frompat = qr/^From:\s+.*\n # initial line
 (?:\s+.*\n)* # continuation lines
 /xim;

 $count++;
 $total_size += length $message;
 letter_histogram($message);
 from_histogram($message =~ /($frompat)/);
 }

The results:

 Before After

 real 0m8.356s real 0m1.259s
 user 0m6.770s user 0m1.230s
 sys 0m0.030s sys 0m0.020s

Well how about that?

An 81% speedup

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 46

Differences
When optimizing a program, it’s
vitally important that you not break it

Unless you live on the planet where
it’s important to get the wrong answer
as quickly as possible

So here’s what I did:

 % perl mfa1.pl MBOX > out1
 % perl mfa2.pl MBOX > out2
 % diff -u out?

We hope that the outputs will be
identical

If not, we have to worry

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 47

Differences
 % sdiff -w60 out?

Here’s the output:

 Messages : 109 Messages : 109
 Total Size : 190790 | Total Size : 190342
 Average Size : 1750 | Average Size : 1746
 Most Common Characters: Most Common Characters:
 : 25557 | : 24981
 e : 13719 e : 13719
 o : 9330 o : 9330
 t : 7473 | t : 7515
 r : 7460 | r : 7501
 Least Common Characters: Least Common Characters:
 ~ : 18 ~ : 18
 # : 14 # : 14
 \ : 9 \ : 9
 & : 6 & : 6
 Z : 2 Z : 2
 | : 2 | : 2
 Most Common Domains: Most Common Domains:
 plover.com : 52 plover.com : 52
 upenn.edu : 38 upenn.edu : 38
 pobox.com : 19 pobox.com : 19

Uh oh

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 48

Differences
 Total Size : 190790 | Total Size : 190342
 Average Size : 1750 | Average Size : 1746

Fortunately, this problem is easy to resolve

Either the total size was 190342, or it wasn’t

 % wc -c MBOX
 190342 MBOX

How about that?

Optimizing the program fixed a bug

Running the messages through Mail::Internet->new->as_string altered them

Trailing spaces were trimmed from some header lines

The continuation characters were changed in other headers

Capitalization was changed in some header field names

 In-Reply-To: ... In-reply-to: ...

 t : 7473 | t : 7515
 r : 7460 | r : 7501

All this will alter the character counts

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 49

Mail Folder Analyzer Revisited
Back to the MFA

The profiler says that main::letter_histogram is consuming most of the CPU
time

 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 63.7 0.830 0.829 109 0.0076 0.0076 main::letter_histogram
 13.8 0.180 0.180 1 0.1800 0.1800 Mail::Util::read_mbox

A 20% speedup in this one function would reduce the program’s run time by 1/8

 sub letter_histogram {
 my $strdex = (length $_[0])-1;
 $letter_hist{substr($_[0],$_,1)}++ for (0..$strdex);
 }

Not much to work with here

I tried a bunch of things I thought of and some the test audiences suggested

No luck

Some of these things are in the Bonus Section at the end

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 50

Mail Folder Analyzer Revisited
We couldn’t get any improvement from letter_histogram

 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 63.7 0.830 0.829 109 0.0076 0.0076 main::letter_histogram
 13.8 0.180 0.180 1 0.1800 0.1800 Mail::Util::read_mbox
 4.61 0.060 0.130 3 0.0200 0.0432 main::BEGIN
 4.61 0.060 0.887 109 0.0005 0.0081 main::handle_message

Maybe look into read_mbox now?

No.

The profiler is telling us something extremely important
here:

Trying to speed up the program any more would be a
waste of effort

The next biggest target is Mail::Util::read_mbox

But a 20% speedup here would only get us a 2.8 % overall speedup

That’s a total of about 36 milliseconds per run

Would it really be worth the trouble?

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 51

When It’s Time to Give Up
 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 63.7 0.830 0.829 109 0.0076 0.0076 main::letter_histogram
 13.8 0.180 0.180 1 0.1800 0.1800 Mail::Util::read_mbox
 4.61 0.060 0.130 3 0.0200 0.0432 main::BEGIN
 4.61 0.060 0.887 109 0.0005 0.0081 main::handle_message

We could conceivably save up to 180 ms per run by sufficiently clever hacking of
read_mbox

How much is that pony really worth?

Say my computer cost $3000 and has a lifetime of about 5 years

That’s about .0019 cents per CPU-second

The benefit of a 20% speedup in read_mbox is about .000000676 dollars per
run

That’s the pony. What is the price?

My time bills at a fairly high rate, but let’s say it’s $50 per hour

I might spend 20 minutes getting the speedup

To break even, I would have to run the program about 25 million times

Of course, this is much more likely if the program has 25 million users

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 52

The Big Picture
People waste a huge amount of time on performance improvements

Here’s a more common situation

A programmer is assigned to make program X faster

The programmer spends a week on the project

The programmer’s salary is US$65,000 per year

Cost of project: $2,600 (counting overhead, benefits, etc.)

Compare this cost with the cost of buying another Gb of memory

Or a really hot CPU upgrade

Or a second server

Often, the hardware purchase is a lot more cost-effective

It is also more likely to be successful

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 53

The Big Picture
Through the 1960s, hardware was terribly expensive

Machines were physically large and computationally small

"The late Professor Don Gillies at Illinois claimed to
have written the first assembler. . . .

"Gillies was a grad student of John Von Neumann,
working on the IAS machine at Princeton. He was
supposed to be working as a coder, translating
programs written by more advanced researchers into
machine code, but he found the job tedious, and
wrote an assembler to help him do it faster.

"John Von Neumann’s reaction was extremely
negative. Gillies quotes his boss as having said ’We
do not use a valuable scientific computing instrument
to do clerical work!’"

(This was reported by Doug Jones of U. Iowa; Gillies was his thesis advisor)

(If true, it would have taken place around 1953)

The discipline of computer programming was forged in this environment

It gave us a hangover

We still think like this

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 54

POD Formatting
I use the documentation all the time

 % time perldoc perlfunc > /dev/null

 real 0m24.396s
 user 0m22.170s
 sys 0m0.370s

But I’d use it more if perldoc weren’t so slow

This section is about the perldoc that comes with Perl 5.8

Perl documentation comes in the very simple POD format

pod2man translates POD to the Unix man page format

nroff formats man pages for display on a terminal

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 55

POD Formatting
First, a note about The Big Picture

If perldoc is slow, the best solution might not to be to speed it up

The best solution might be more like this:

 for i in /src/perl-5.8.0/pod/*; do
 j=‘basename $i .pod‘
 pod2man $i > /usr/local/man/man1p/$j.1p
 man -F $j
 done

Then you can use man perlfunc or whatever

Perl does this automatically when it is installed

Still, there is some value in speeding up perldoc

Installing the Perl/Tk documentation takes a very long time

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 56

perldoc

perldoc is mostly just a wrapper around pod2man

It locates files and invokes pod2man and nroff as necessary

Let’s find out how to run pod2man:

 % strace -s10000 -f -o perldoc.trace perldoc perlfunc > /dev/null

This generates a list of every system call run by perldoc

In particular, it will tell us what commands perldoc ran

 % grep execve perldoc.trace
 21892 execve("/usr/local/bin/perldoc", ["perldoc", "perlfunc"], ...
 21893 execve("/bin/sh", ["sh", "-c",
 "/usr/local/bin/pod2man --lax /usr/local/lib/perl5/5.8.0/pod/perlfunc.pod | nroff -man"], ...
 21894 execve("/usr/local/bin/pod2man",
 ["/usr/local/bin/pod2man", "--lax",
 "/usr/local/lib/perl5/5.8.0/pod/perlfunc.pod"], ...
 21895 execve("/usr/bin/nroff", ["nroff", "-man"], ...

Now let’s run pod2man the same way:

 % time /usr/local/bin/pod2man --lax
 /usr/local/lib/perl5/5.8.0/pod/perlfunc.pod > /dev/null

 real 0m18.158s
 user 0m17.670s
 sys 0m0.080s

Yup

Probably a lot of the rest is in nroff

Presumably we’re not prepared to do anything about nroff

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 57

pod2man

Now we pull out the profiler:

 % perl -d:DProf ./pod2man-1.pl --lax < perlfunc.pod
 > perlfunc.man

Save the output so that we can check future outputs against it

 % dprofpp tmon.out > dp.out

 Total Elapsed Time = 21.27246 Seconds
 User+System Time = 19.99246 Seconds
 Exclusive Times
 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 23.4 4.686 14.255 1440 0.0033 0.0099 Pod::Parser::parse_text
 9.55 1.909 1.887 3609 0.0005 0.0005 Pod::Man::guesswork
 6.54 1.307 20.109 1 1.3073 20.109 Pod::Parser::parse_from_filehandle
 5.99 1.197 18.354 1609 0.0007 0.0114 Pod::Parser::parse_paragraph
 5.95 1.189 1.140 7733 0.0002 0.0001 Pod::ParseTree::append
 5.79 1.158 1.349 2121 0.0005 0.0006 Pod::InteriorSequence::new
 4.68 0.936 3.004 3561 0.0003 0.0008 Pod::Man::collapse
 3.99 0.797 2.547 2121 0.0004 0.0012 Pod::Man::sequence
 3.50 0.700 0.692 1208 0.0006 0.0006 Pod::Man::textmapfonts
 2.80 0.559 0.600 3561 0.0002 0.0002 Pod::ParseTree::_unset_child2paren

Clearly parse_text is the big target here

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 58

parse_text

parse_text is about 76 lines long

Its job is to take apart a POD paragraph like this:

 Be aware that the optimizer might have optimized call frames
 away before C<caller> had a chance to get the information.
 That means that C<caller(N)> might not return information
 about the call frame you expect it do, for C<< N > 1 >>. In
 particular, C<@DB::args> might have information from the
 previous time C<caller> was called.

Locate the escaped sections like C<caller> and C<< N > 1 >>

Next step: Grovel over parse_text until you understand it

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 59

Pod::ParseTree::append

Digression: While grovelling over the POD parser code, I wandered in here:

 sub append {
 my $self = shift;
 local *ptree = $self;
 for (@_) {
 next unless length;
 if (@ptree and !(ref $ptree[-1]) and !(ref $_)) {
 $ptree[-1] .= $_;
 }
 else {
 push @ptree, $_;
 }
 }
 }

A Pod::ParseTree object is basically an array of strings and objects

Normally, we can use push to append a new item to the array

But if the last element of the array is a string,

and the thing we’re appending is also a string

then we can concatenate the two strings instead

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 60

Pod::ParseTree::append

I wondered if it was possible to simplify this

What’s the next thing I did?

I checked to dprofpp output to see if append was worth investigating

 5.95 1.189 1.140 7733 0.0002 0.0001 Pod::ParseTree::append

It’s tied for fourth place

It’s also small

It should be worth a little effort

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 61

Pod::ParseTree::append

 sub append {
 my $self = shift;
 local *ptree = $self;
 for (@_) {
 next unless length;
 if (@ptree and !(ref $ptree[-1]) and !(ref $_)) {
 $ptree[-1] .= $_;
 }
 else {
 push @ptree, $_;
 }
 }
 }

What if we didn’t bother to agglomerate strings?

Then append would become:

 sub append {
 my $self = shift;
 push @$self, @_;
 }

It’s easy to imagine that this would speed up append substantially

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 62

Pod::ParseTree::append

Will failing to agglomerate strings cause any problems?

There might be code that is depending on there not being two consecutive strings

But I don’t think there is

Access to Pod::ParseTree objects is mediated by methods like this:

 sub raw_text {
 my $self = shift;
 my $text = "";
 for (@$self) {
 $text .= (ref $_) ? $_->raw_text : $_;
 }
 return $text;
 }

This will work fine if I change append

Let’s give it a try

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 63

Pod::ParseTree::append

To test my change, I created a local Pod directory

Copied Pod/InputObjects.pm into it

Modified my Pod/InputObjects.pm

Then ran:

 % perl -I. ‘which pod2man‘ < perlfunc.pod > append-after.out

Preliminary results:

Correctness:

 % cmp perlfunc.man append-after.out

Timing:

 Before After

 real 0m26.232s real 0m22.225s
 user 0m24.520s user 0m20.870s
 sys 0m0.420s sys 0m0.490s

I also reran the Pod:: test suite to make sure I didn’t break anything

End of digression

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 64

parse_text

The next thing that occurs to me: parse_text is complicated because of C<< a->b
>> and such

There’s a lot of parsing

And a delimiter stack in case of A<< foo B<<< c->d >>> bar >>

And a lot of special-casery

But these complicated cases rarely if ever come up

The common case is very simple

Typically, something like C<caller>

Optimize for the common case.

Doing this is a rather involved exercise in maintenance programming

I love maintenance programming

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 65

parse_text

parse_text splits the input into a list of tokens

Then it deals with the tokens one at a time

The existing tokenizer splits C<caller> into two tokens:

C< and caller>

It puts an object representing C< onto the stack

Then when it sees caller> it pops the stack

This complication is necessary for difficult cases like A<foo B<bar> baz>

For simple cases it is overkill

Idea:

Tokenize difficult cases as before

But tokenize simple cases like C<caller> as single tokens

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 66

parse_text

At this point I built a test case

 This is a small stress test of the B<pod delimiter> mechanism. You
 are allowed to have X<< double >> and even Y<<< triple >>> delimiters.
 Ordinary Z<single I<delimiters> may be> nested or may contain A<funny
 < characters>. C<< Double D<delimiters> may >> E<< also F<<< nest >>>
 if desired >>.

Old tokenization:

 (This is a small stress test of the)
 (B<)
 (pod delimiter> mechanism. You\nare allowed to have)
 (X<<)
 (double >> and even)
 (Y<<<)
 (triple >>> delimiters.\nOrdinary)
 (Z<)
 (single)
 (I<)
 (delimiters> may be> nested or may contain)
 (A<)
 (funny \n< characters>.)
 (C<<)
 (Double)
 (D<)
 (delimiters> may >>)
 (E<<)
 (also)
 (F<<<)
 (nest >>>\nif desired >>.\n)

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 67

parse_text

New tokenization:

 (This is a small stress test of the)
 (B<pod delimiter>)
 (mechanism. You\nare allowed to have)
 (X<<)
 (double >> and even)
 (Y<<<)
 (triple >>> delimiters.\nOrdinary)
 (Z<)
 (single)
 (I<delimiters>)
 (may be> nested or may contain)
 (A<)
 (funny\n< characters>.)
 (C<<)
 (Double)
 (D<delimiters>)
 (may >>)
 (E<<)
 (also)
 (F<<<)
 (nest >>>\nif desired >>.\n)

So we now need to add handlers for the new X<complete sequence> tokens

In the old regime, the sequence would be put on the stack, then taken off again

We’ll just do that in one fell swoop

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 68

parse_text

Old tokenizer code:

 split /([A-Z] < # Escape code and open bracket
 (?: <+ \s) ? # Possible extended delimiter
)/x;

New tokenizer:

 split /([A-Z] < # Escape code and open bracket
 (?: [^<>]* > # ...and the rest of the escape sequence
 | (?: <+ \s)? # OR a possible extended delimiter
))/x;

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 69

parse_text

Old code:

 elsif (/^([A-Z])(<(?:<+\s)?)$/) {
 ## Push a new sequence onto the stack of those "in-progress"
 ($cmd, $ldelim) = ($1, $2);
 $seq = Pod::InteriorSequence->new(
 -name => $cmd,
 -ldelim => $ldelim, -rdelim => ’’,
 -file => $file, -line => $line
);
 $ldelim =~ s/\s+$//, ($rdelim = $ldelim) =~ tr/</>/;
 (@seq_stack > 1) and $seq->nested($seq_stack[-1]);
 push @seq_stack, $seq;
 }

This handles the X< part of a sequence

It builds a new Pod::InteriorSequence and puts it on the stack

Later code takes the remainder, complete sequence> blah blah

Expands complete sequence if necessary

Appends it to the Pod::InteriorSequence object

Puts blah blah back into the input stream

There’s a lot of state variable management and stack jiggery-pokery

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 70

parse_text

My first cut at a special case for C<simple> was:

 ## Look for an entire simple sequence 20030420 mjd@plover.com
 if (/^([A-Z])<([^<>]*)>$/) {
 $seq = Pod::InteriorSequence->new(
 -name => $1,
 -ldelim => "<", -rdelim => ">",
 -file => $file, -line => $line
);
 $seq->append($2);
 $seq_stack[-1]->append($expand_seq
 ? &$xseq_sub($self, $seq)
 : $seq);
 }
 ... the rest as before ...

I just cribbed most of this from further down

I chopped out the parts that seemed unnecessary

Filled in -rdelim since it was known immediately

The ->append($2) code is simple because I know that $2 is a plain string

(The original version was more like the second append call)

I don’t have to put C<... on the stack while I go looking for ...>.

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 71

parse_text

Then I ran the tests

They almost all passed

 basic...........ok 2/11Can’t call method "raw_text"
 on unblessed reference at ../Pod/InputObjects.pm line 618,
 <GEN0> line 129.
 basic...........dubious
 Test returned status 255 (wstat 65280, 0xff00)
 DIED. FAILED tests 3-11
 Failed 9/11 tests, 18.18% okay

Not bad considering I don’t know what I am doing

I will spare you the details of the next 90 minutes of debugging

The answer: I missed copying one of the lines from the other blocks!

 if (/^([A-Z])<([^<>]*)>$/) {
 $seq = Pod::InteriorSequence->new(
 -name => $1,
 -ldelim => "<", -rdelim => ">",
 -file => $file, -line => $line
);
 $seq->append($2);
 $seq->nested($seq_stack[-1]) if @seq_stack > 1;
 $seq_stack[-1]->append($expand_seq
 ? &$xseq_sub($self, $seq)
 : $seq);
 }

Whoops!

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 72

The Moment of Truth
 Before After

 real 0m26.957s real 0m27.117s
 user 0m24.180s user 0m22.020s
 sys 0m0.550s sys 0m0.480s

Not bad for one change (about 9%)

The outputs are identical

Before:

 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 22.9 4.507 14.205 1440 0.0031 0.0099 Pod::Parser::parse_text

After:

 19.4 3.515 12.303 1440 0.0024 0.0085 Pod::Parser::parse_text

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 73

Devel::SmallProf

Another useful tool for profiling is Devel::SmallProf

Instead of measuring the contribution per subroutine, it measures contribution per
line

Of course, it is even less accurate than Devel::DProf

It’s available on CPAN, but isn’t standard

To use it:

 % perl -d:SmallProf ./pod2man-1.pl --lax ...

It leaves behind a report in smallprof.out

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 74

smallprof.out

================ SmallProf version 0.9 ================
Profile of Pod/Parser.pm Page 174

 count wall tm cpu time line
 0 0.000000 0.000000 785: ## capturing parens keeps the delimiters)
 1440 0.175561 0.200000 786: $_ = $text;
 0 0.000000 0.000000 787:# my @tokens = split /([A-Z]<(?:<+\s)?)/;
 1440 0.286681 0.460000 788: my @tokens = split /([A-Z] < #
 0 0.000000 0.000000 789: (?: [^<>]* > # ... and
 0 0.000000 0.000000 790: | (?: <+ \s)? # OR a
 0 0.000000 0.000000 791:))/x;
 0 0.000000 0.000000 792:# { local $" = ")\n("; warn "tokens:
 7160 0.561213 0.970000 793: while (@tokens) {
 5720 0.523698 0.900000 794: $_ = shift @tokens;
 5720 0.376381 0.770000 795: next unless length;
 0 0.000000 0.000000 796: ## Look for an entire simple sequence
 5652 0.924686 1.030000 797: if (/^([A-Z])<([^<>]*)>$/) {
 2083 1.415592 1.390000 798: $seq = Pod::InteriorSequence-
 0 0.000000 0.000000 799: -name => $1,
 0 0.000000 0.000000 800: -ldelim => "<", -
 0 0.000000 0.000000 801: -file => $file, -
 0 0.000000 0.000000 802:);
 2083 1.182618 1.080000 803: $seq->append($2) if length($2);
 2083 0.179391 0.220000 804: $seq->nested($seq_stack[-1]) if
 2083 0.576378 0.540000 805: $seq_stack[-1]-
 0 0.000000 0.000000 806: }
 0 0.000000 0.000000 807: ## Look for the beginning of a
 0 0.000000 0.000000 808: elsif (/^([A-Z])(<(?:<+\s)?)$/) {
 0 0.000000 0.000000 809: ## Push a new sequence onto the
 38 0.003812 0.010000 810: ($cmd, $ldelim) = ($1, $2);
 38 0.029990 0.020000 811: $seq = Pod::InteriorSequence-
 0 0.000000 0.000000 812: -name => $cmd,
 0 0.000000 0.000000 813: -ldelim => $ldelim, -
 0 0.000000 0.000000 814: -file => $file, -
 0 0.000000 0.000000 815:);

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 75

smallprof.out

To do anything useful with this, we’d have to extract the section of interest

Then trim out the page headers

Then sort the lines in ascending order by CPU time

It’s easier and more useful to replace Devel::SmallProf

You can write your own Devel:: modules

They get access to the same debugger hooks that other Devel:: modules do

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 76

Debugger Features
Lots of functions for haruspication

See perldebguts (or perldebug) for fullest details

@{"::_<foo.pl"} contains the source code of foo.pl

%DB::sub contains subroutine start-end information

DB::DB() is called before each executed line

caller() returns current package, filename, line as usual

caller() also sets @DB::args when called from package DB

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 77

Trivial Debugger
 package Devel::Count;

 sub DB::DB { ++$count }

 END { print STDERR "Total statements: $count\n" }

Now perl -d:Count anyprogram.pl prints out:

 Total statements: 286

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 78

Devel::OurProf

 package Devel::OurProf;
 BEGIN { ($start_time) = times
 open REPORT, ">", "ourprof.out" or die $! }

 sub DB::DB {
 my ($end_time) = times;
 my $elapsed = $end_time - $start_time;
 my ($package, $filename, $line) = caller(0);
 my $sub = (caller(1))[3];
 ($start_time) = times, return
 unless $sub eq ’Pod::Parser::parse_text’;
 $count[$line]++;
 $time[$line] += $elapsed;
 $total_time += $elapsed;
 ($start_time) = times;
 }

 ... continued ...

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 79

Devel::OurProf

 END { # Print out the report
 select REPORT;
 my @r;
 my @line_ranks = sort {$time[$b] <=> $time[$a]} (1 .. $#time);
 @r[@line_ranks] = ((’*’) x 10, (’+’) x 15, (’-’) x 75, (’.’) x 150);
 for (1 .. $#count) {
 my ($c, $t) = ($count[$_], $time[$_]);
 my $L = ${"::_<Pod/Parser.pm"}[$_];
 chomp $L;
 $L = substr($L, 0, 54);
 if ($c) {
 printf "%4d%s%6d %5.2f %5.2f %-54s\n",
 $_, $r[$_] || ’ ’, $c, $t, 100*$t/$total_time, $L;
 } else {
 printf "%4d %-54s\n", $_, $L;
 }
 }
 }

The @r thing is a little tricky, but it’s just a trick

$r[$N] is a * just when $N is one of the top 10 longest-running lines

It is a + when $N is ranked 11-25

It is a - when $N is ranked 26-100

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 80

ourprof.out

Here’s an excerpt:

 785 ## capturing parens keeps the delimiters)
 786+ 1440 0.10 1.87 $_ = $text;
 787 # my @tokens = split /([A-Z]<(?:<+\s)?)/;
 788+ 1440 0.09 1.69 my @tokens = split /([A-Z] < # Escap
 789 (?: [^<>]* > # ... and the re
 790 | (?: <+ \s)? # OR a possible
 791))/x;
 792 # { local $" = ")\n("; warn "tokens: (@tokens)\
 793* 7160 0.64 11.99 while (@tokens) {
 794* 5720 0.22 4.12 $_ = shift @tokens;
 795* 5720 0.25 4.68 next unless length;
 796 ## Look for an entire simple sequence 2003
 797+ 5652 0.14 2.62 if (/^([A-Z])<([^<>]*)>$/) {
 798* 2083 0.19 3.56 $seq = Pod::InteriorSequence->new(
 799 -name => $1,
 800 -ldelim => "<", -rdelim =>
 801 -file => $file, -line
 802);
 803+ 2083 0.10 1.87 $seq->append($2) if length($2);
 804+ 2083 0.10 1.87 $seq->nested($seq_stack[-1]) if @seq_s
 805+ 2083 0.10 1.87 $seq_stack[-1]->append($expand_seq ? &
 806 }
 807 ## Look for the beginning of a sequence
 808 elsif (/^([A-Z])(<(?:<+\s)?)$/) {
 809 ## Push a new sequence onto the stack
 810- 38 0.01 0.19 ($cmd, $ldelim) = ($1, $2);
 811 38 0.00 0.00 $seq = Pod::InteriorSequence->new(
 812 -name => $cmd,
 813 -ldelim => $ldelim, -rdeli
 814 -file => $file, -line
 815);

Some of this might be suggestive

For example, we might try to adjust the tokenizer to avoid generating empty tokens

This would obviate line 795

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 81

Turnaround
Sometimes the key performance criterion is responsiveness

Time-sharing systems are a lot less efficient than batch systems

But batch systems are dead

Because everyone hates them

I had a client with a CGI application

Their client (Ford) would hit the CGI application in large bursts

Maybe 2000 times over five minutes

Then not at all for a long time

How to get the application to reply to Ford in a reasonable amount of time?

The code is about 430 lines, so we’ll only see excerpts

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 82

Turnaround
The first thing the program does is recover an XML file from the CGI request:

 my $xmlpost = CGI::XMLPost->new();
 my $xml = $xmlpost->data();

It saves the XML (actually a SOAP request) to two files:

 open(OUT,">$outfile");
 print OUT $xml;
 close(OUT);

 open(OUT,">>$dailyfile");
 print OUT $outfile,":",$xml,"\n";
 close(OUT);

Then it reads the XML back in:

 my $xs1 = XML::Simple->new();
 my $doc;
 eval { $doc=$xs1->XMLin($outfile, forcearray => [’Change’]); };

If all goes well to this point, it returns a success code back to Ford

After printing the success or failure code, the program opens a database connection

It extracts information from the SOAP request and adds it to the database

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 83

Turnaround
The primary problem was the sudden burst of requests all at once

3000 instances of the program would run in a few minutes

These 3000 instances all competed for the CPU and the database

The programmers tried to improve turnaround time this way:

 FORK: {
 if ($pid = fork) {
 # exit parent
 CORE::exit;
 }
 elsif (defined $pid) {
 close(STDIN);
 close(STDOUT);
 close(STDERR);
 open(STDOUT,">>/programs/cassens/DC/CO/eHub/FordXML.stdout");
 open(STDERR,">>/programs/cassens/DC/CO/eHub/FordXML.stderr");
 }

This allows the server to respond to the client immediately

The child process goes on to talk to the database

This made the problem worse, not better

6000 processes instead of 3000

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 84

Turnaround
The biggest improvement:

The client converted the CGI script into an Apache plugin module

No more 3000 processes

However, I had some recommendations also

The major one:

Commit the XML to a file, check it, return the status code, and exit

A separate background process can take care of parsing it and updating the database

The separate process handles one file at a time

This makes it possible to control the load

Only one background process is running at a time

It can go to sleep when system load is high, continue when things cool off

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 85

Turnaround
Also some minor recommendations

Instead of this:

 eval { $doc=$xs1->XMLin($outfile, forcearray => [’Change’]); };

Just use this:

 eval { $doc=$xs1->XMLin($xml, forcearray => [’Change’]); };

The XML is already in memory (we just wrote it out)

So why bother to read it back in again?

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 86

Turnaround
Another minor recommendation: Get rid of CGI::XMLPost

 use CGI::XMLPost;
 my $xmlpost = CGI::XMLPost->new();
 my $xml = $xmlpost->data();

If you look at the CGI::XMLPost code, you discover that what it’s doing is:

 my $cl = $ENV{CONTENT_LENGTH};

 if (read(STDIN, $self->{_data}, $cl) == $cl)
 {
 return $self;
 }

The world is full of useless modules like this

They exist only to put a hokey OO interface on something that didn’t need one

I suggested replacing it with:

 my $xml;
 my $cl = $ENV{CONTENT_LENGTH};
 unless (read(STDIN, $xml, $cl) == $cl)
 {
 print "Status: 404 Not Found\n";
 ...
 print XMLLOG "bad post\n";
 exit;
 }

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 87

Blunders

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 88

Pseudo-Hashes
Hashes are commonly used for objects

Keys are member data names, values are member data

 if ($self->{TYPE} eq ’octopus’) {
 $self->{tentacles} = 8;
 $self->{hearts} = 3;
 $self->{favorite_food} = ’crab cakes’;
 }

But arrays are smaller and faster

Big disadvantage: Data is referred to by number instead of by name

 if ($self->[2] eq ’octopus’) {
 $self->[17] = 8;
 $self->[4] = 3;
 $self->[28] = ’crab cakes’;
 }

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 89

Pseudo-Hashes
For 5.005, someone had an interesting idea:

Suppose an object was declared from a certain class, like this:

 my Critter $self;

Suppose Critter objects are based on arrays instead of hashes

And suppose Critter.pm declared its fields at compile time, like this:

 package Critter;
 use fields qw(NAME TYPE size hearts likes_cookies
 ...
 pelagic tentacles is_tasty
 ...
);

Then when Perl saw $self->{TYPE} it could pretend you wrote $self->[2]

You would get all the benefits of both!

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 90

Pseudo-Hashes
This idea was developed over the next few years

Big problem: This cannot be translated at compile time

 $self->{$key}

Solution: $self would be an arrayref that pretended to be a hashref

It would carry around a hash that mapped keys to values:

 [{ NAME => 1, TYPE => 2, size => 3, ... },
 "Fenchurch",
 "Octopus", "Small", 3, undef, ...]

You were now allowed to use an arrayref as if it were a hashref

This was formerly an error:

 $array_ref->{$key}

Now it is an abbreviation for this:

 $array_ref->[$array_ref->[0]->{$key}]

Note that this is somewhat slower than $hash_ref->{$key} would have been

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 91

Pseudo-Hashes
It was all very complicated

Lots and lots of code had to be added to Perl

All sorts of complications

exists had to be extended to work on arrays

After it was all done, however, the new improved semantics were 15% faster than
the old:

 Old New

 package Critter;
 use fields qw(... hearts ...);

 my Critter $self;

 $self->{hearts}; $self->{hearts};

So perhaps it was worth all that trouble

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 92

The Missing 15%
A couple of years later, some bright boy finally asked the right question

He did not compare the new syntax with the old syntax in Perl 5.005

Instead, he compared the old syntax in 5.005 with the old syntax in 5.004

5.005 was 15% slower

Adding the pseudohash stuff to 5.005 had slowed down all hash access by 15%

In the best possible case, the efficiency gain was just enough to get you back to zero

Pseudo-hashes are now being withdrawn

Good riddance

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 93

Getting the Wrong Answer as Quickly as
Possible
 Message-ID: <3A317EF2.3000509@klamath.dyndns.org>
 Subject: eval() performance
 Date: Sat, 09 Dec 2000 00:38:11 GMT

 I’ve been taking a look at some old Perl code, written by
 someone else. The main part of the app does the following
 (it’s a CGI script):

 1 Read in a certain CGI parameter
 2 Based on this parameter, open() a certain Perl script as a
 text file and read the contents into a single scalar variable
 3 Use the following code to evaluate the loaded code:

 eval $code;
 if ($@) {
 #handle errors
 }

 My question is: how would you improve this? My first
 thought was to use an eval block - i.e.

 eval {$code;};
 if ($@) {
 #handle errors
 }

 Would this improve performance?

Good question

Unfortunately, things started to go awfully wrong at that point

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 94

Getting the Wrong Answer as Quickly as
Possible
 >> Would this improve performance?
 >
 > Write a benchmark and see.

 Well alright :-)

 #!/usr/bin/perl -w
 #test.pl
 use strict;
 use Benchmark;
 undef $/;
 my $code;
 timethese(8000, {
 ’Slow Eval’ => sub {open(INPUT, ’code.pl’);$code =
 <INPUT>;close(INPUT);eval $code;},
 ’Fast Eval’ => sub {open(INPUT, ’code.pl’);$code =
 <INPUT>;close(INPUT);eval {$code;};}
 });

 Results:

 Benchmark: timing 8000 iterations of Fast Eval, Slow Eval...
 Fast Eval: 0 wallclock secs
 (0.30 usr + 0.13 sys = 0.43 CPU)
 Slow Eval: 6 wallclock secs
 (4.98 usr + 0.42 sys = 5.40 CPU)

 So apparently an eval block is significantly faster than
 calling eval() on a scalar.

Well, that’s good to know

Anyone see the problem here?

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 95

Getting the Wrong Answer as Quickly as
Possible

First, the benchmark code is way too complicated

I’ll use this instead:

 #!/usr/bin/perl -w
 use Benchmark;
 my $code = q{"x" . "y"};

 timethese(8000, {
 ’Slow Eval’ => sub {eval $code },
 ’Fast Eval’ => sub {eval {$code} }
 });

 Benchmark: timing 8000 iterations of Fast Eval, Slow Eval...
 Fast Eval: 0 wallclock secs
 (0.02 usr + 0.00 sys = 0.02 CPU)
 @ 400000.00/s (n=8000)
 Slow Eval: 4 wallclock secs
 (3.43 usr + 0.00 sys = 3.43 CPU)
 @ 2332.36/s (n=8000)

Looks conclusive, doesn’t it?

Anyone see the problem here?

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 96

Getting the Wrong Answer as Quickly as
Possible
 #!/usr/bin/perl -w
 use Test::More ’no_plan’;
 my $code = q{"x" . "y"};
 is(eval $code , ’xy’, "string eval");
 is(eval{$code}, ’xy’, "block eval");

Let’s make sure those evals are doing what we thought:

 ok 1 - string eval
 not ok 2 - block eval
 # Failed test (evaltest.pl at line 6)
 # got: ’"x" . "y"’
 # expected: ’xy’
 1..2
 # Looks like you failed 1 tests of 2.

How about that

The "block eval" is not actually eval-ing the code

eval {$code} is not analogous to eval $code

It is analogous to eval ’$code’

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 97

The Wrong Question
 "So apparently an eval block is
 significantly faster than
 calling eval() on a scalar."

Yep, benchmarks show that it’s 170 times faster

But that’s because it doesn’t actually evaluate anything

Whoops

If you have code in a string, and you want to execute the
code, you must use ’string eval’

Asking whether string or block eval is faster is The Wrong
Question

It’s like asking whether a screwdriver is faster than
blinking your eyes

You can blink your eyes a lot faster than you can use a
screwdriver

But it won’t help you get that screw in

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 98

Trivial Benchmarks
That’s another reason I don’t like Benchmark.pm

It makes it too easy to ask the wrong questions

"Which is faster? Subroutine or method calls?"

"Which is faster? map or for?"

People like to use Benchmark to answer questions like this

But often the best answer is "Who the hell cares?"

Suppose it turns out that map is faster

Only a pinhead would rewrite all his programs to use map instead of for

The difference is going to be minuscule anyway

If it isn’t, the right response is to file a bug report to p5p

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 99

Trivial Benchmarks
 Newsgroups: comp.lang.perl.misc
 Date: Wed, 10 Oct 2001 18:59:17 +0400
 Message-ID: <3BC46245.E2B3630A@pisem.net>

 Suppose we have $_="haha:lala:rere";
 What is faster??
 ($haha) = split /:/, $_; # or
 ($haha) = split(/:/, $_, 1);

Lots of people weighed in on this matter

Some advised the use of Benchmark

Few noticed that the two samples do not do the same thing

Or that the second sample is entirely worthless

 # $_ = "a:b:c:d"
 split /:/, $_, 3; # ("a", "b", "c:d")
 split /:/, $_, 2; # ("a", "b:c:d")
 split /:/, $_, 1; # ("a:b:c:d")

 ($haha) = split /:/, $_; # ("a", "b:c:d")

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 100

1+1=0
Consider this:

 while (<>) {
 my ($n, $text) = split /: /, $_, 2;
 $line[$n] = $text;
 }

Each time $n is larger than @line, the array is extended

It might have to be copied to a new, larger region of memory

Why not extend all at once?

If you know that $n will get as large as 1000000, then:

 $#line = 1000000;
 while (<>) {
 my ($n, $text) = split /: /, $_, 2;
 $line[$n] = $text;
 }

This should save time

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 101

1+1=0
One day in 1998 Jon Orwant posted to perl5-porters

He had benchmarked the $#line = 1000000 optimization

It was not speeding anything up

I tried to quantify the speedup of preallocating arrays, and found that it actually slows
your code down. Always. Several benchmarks on several platforms with several versions

of Perl 5 all chanted in unison: Avoid setting $#array.

(http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/1998-04/msg01096.html

There was a big hue and cry over this

"$#line = 1000000 must be broken!"

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 102

1+1=0
Here’s Jon’s benchmark:

 use Benchmark;

 sub one_by_one {
 my (@c);
 for (my $i; $i < 100000; $i++) {
 $c[$i] = rand;
 }
 }

 sub preallocate {
 my (@c);
 $#c = 99999;
 for (my $i; $i < 100000; $i++) {
 $c[$i] = rand;
 }
 }

 timethese (100, { ’preallocate’ => ’preallocate()’,
 ’one_by_one’ => ’one_by_one()’
 });

 Benchmark: timing 100 iterations of one_by_one, preallocate...
 one_by_one: 111 secs (50.85 usr 0.52 sys = 51.37 cpu)
 preallocate: 148 secs (67.13 usr 0.57 sys = 67.70 cpu)

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 103

1+1=0
 sub preallocate {
 my (@c);
 $#c = 99999;
 for (my $i; $i < 100000; $i++) {
 $c[$i] = rand;
 }
 }

The answer was eventually provided by Chip Salzenberg

Perl has a clever optimization in it

Perl figures that @c got big once, so it is likely to get big again

When preallocate returns, @c is not deallocated

The next call re-uses the same space as the last call

And that leaves $#c = 99999 with nothing to do

In fact, it’s a small waste of time because it’s superfluous

So you pay the cost for your ’optimization’

But the gross benefit is zero because you already had the benefit

One optimization plus one optimization looks like zero optimizations

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 104

1+1=0
This bites me all the time

For example, I’ll add a file cache to a program and discover it doesn’t work

Because the OS already has a file cache behind the scenes

I considered going to a lot of trouble to get Tie::File to always write whole disk
blocks

But there’s no point, because the stdio library already does that

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 105

File Editing
 Subject: How to edit a file most efficiently?
 Date: 1998/04/27
 Message-ID: <3544E019.A1F7A6D6@shell.com>

 If I want to edit a file (say, remove all comment lines), I
 can do this:

 open IN, "myin.dat" or die: $!;
 open OUT, ">myout.dat" or die: $!;
 while (<IN>)
 { print OUT $_ unless (/^#/);
 }
 close OUT;
 close IN;
 rename "myout.dat", "myin.dat";

 But this opens two files and does a rename. I suspect
 this won’t be very efficient. Is there a better way?
 Thanks for any advice.

We’ll use Devel::SmallProf here

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 106

Devel::SmallProf

 % wc myin.dat
 1568 5707 44808 myin.dat
 % perl -d:SmallProf copy1.pl
 % wc myin.dat
 1466 5215 40357 myin.dat
 % cat smallprof.out
 ================ SmallProf version 0.9 ================
 Profile of ./copy1.pl Page 1
 ===
 count wall tm cpu time line
 0 0.000000 0.000000 1:#!/usr/bin/perl
 0 0.000000 0.000000 2:
 1 0.000186 0.000000 3:open IN, "myin.dat" or "die: $!";
 1 0.000196 0.000000 4:open OUT, ">myout.dat" or "die: $!";
 1570 0.013959 0.270000 5:while (<IN>)
 1569 0.015762 0.270000 6: { print OUT $_ unless (/^#/);
 0 0.000000 0.000000 7: }
 1 0.000239 0.000000 8:close OUT;
 1 0.000054 0.000000 9:close IN;
 1 0.000304 0.000000 10:rename "myout.dat", "myin.dat";

Lines 5 and 6, which copy the file, consume 96.8% of the total run time

And so close to 100% of the CPU time that the difference is not detectable

But this opens two files and does a rename. I suspect this won’t be
very efficient.

Is there a better way? Thanks for any advice.

My advice: You are worrying about the wrong thing

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 107

Good Advice

Donald E. Knuth, a famous wizard, is fond of saying:

Premature optimization is the root of all evil.

(He’s actually quoting Tony Hoare here)

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 108

Premature Optimization
I spent a lot of time and effort writing a really good cache algorithm for Tie::File

It is very sophisticated

It uses a heap data structure to implement a least-recently-used queue

Old records are expired from the cache when it becomes full

A very nice piece of programming

Unfortunately, it makes Tie::File slower, not faster

At least I got my pony

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 109

Premature Optimization
My reasoning was that Tie::File usage will be heavily I/O bound

So anything I could do to reduce real I/O would speed up the module

Having made that decision, I invested a lot of effort in a sophisticated caching
algorithm

But I was wrong

The typical cache hit rate for programs using Tie::File is close to 0

The expense of maintaining the cache is wasted

See Bonus Slides for a quantitative analysis of caching

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 110

Vanity, Vanity, all is Vanity
Some months ago, I asked the Philadelphia Perl Mongers

Why do people bother to use the Schwartzian Transform?

 # Schwartzian Transform
 @sorted = map { $_->[0] }
 sort { $b->[1] <=> $a->[1] }
 map { [$_, -M $_] } @files;

My idea was that this alternative is much easier to understand:

 # Alternative
 { my %date;
 $date{$_} = -M $_ for @files;
 @sorted = sort { $date{$b} <=> $date{$a} } @files;
 undef %date;
 }

I did some benchmarks and found that it was only fractionally slower

 NULL: 0.00u 0.00s 0.00total
 ST: 8.73u 1.48s 10.21total
 Hash: 9.59u 1.63s 11.22total

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 111

Vanity, Vanity, all is Vanity
There was a followup:

I decided to apply Benchmark to these various approaches. I first
compiled a list of 9952 filenames, then sorted them 10**7 times ...

Here’s the code he showed:

 timethese(10**7, {
 ’CODE A’ => ’@sorted = sort { -M $b <=> -M $a } @filenames;’,
 ’CODE B’ => ’@sorted = map { $_->[0] }
 sort {$b->[1] <=> $a->[1]}
 map {[$_, -M $_]} @filenames;’,
 ’CODE C’ => ’$date{$_} = -M $_ for @filenames;
 @sorted = sort {$date{$b} <=> $date{$a} } @filenames;
 undef %date;’,
 ’CODE D’ => ’@sorted = map $_->[0],
 sort {$b->[1] <=> $a->[1]}
 map [$_, -M $_], @filenames;’,
 }
);

The warning sign is already visible, although I didn’t pick up on it yet

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 112

Vanity, Vanity, all is Vanity
 Results:
 Benchmark: timing 10000000 iterations of CODE A, CODE B, CODE C, CODE
 D...
 CODE A: 39 wallclock secs
 (38.50 usr + 0.00 sys = 38.50 CPU) @ 259740.26/s (n=10000000)
 CODE B: 42 wallclock secs
 (42.57 usr + 0.00 sys = 42.57 CPU) @ 234907.21/s (n=10000000)
 CODE C: 93 wallclock secs
 (91.94 usr + 0.00 sys = 91.94 CPU) @ 108766.59/s (n=10000000)
 CODE D: 43 wallclock secs
 (42.13 usr + 0.00 sys = 42.13 CPU) @ 237360.55/s (n=10000000)

Does anyone see anything strange here?

(The 0.00 system time is not an anomaly)

(This benchmark was run on a Windows system)

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 113

Vanity, Vanity, all is Vanity

I decided to apply Benchmark to these various approaches. I first
compiled a list of 9952 filenames, then sorted them 10**7 times ...

Here’s the real tipoff that something is wrong

 CODE A: 39 wallclock secs
 (38.50 usr + 0.00 sys = 38.50 CPU) @ 259740.26/s (n=10000000)

This says that his computer is sorting 9952 filenames 10000000 times in 39 seconds

That means it’s sorting 9952 filenames in 3.9 microseconds

Not likely.

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 114

Vanity, Vanity, all is Vanity
What went wrong here?

The actual code was something like this:

 my @filenames = glob("/tmp/*");

 timethese(10**7, {
 ’CODE A’ => ’@sorted = sort { -M $b <=> -M $a } @filenames;’,
 ...
);

When you give strings to Benchmark, it executes them with eval

It does the eval internally, inside of Benchmark.pm

This is outside the scope of my @filenames

The benchmark is using @Benchmark::filenames, which is empty

You can indeed sort an empty list in 3.7 microseconds

But the results were entirely meaningless

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 115

Vanity, Vanity, all is Vanity
Anyone can make a technical error like this one

But the real problem is more serious

What really went wrong here?

1. People using Benchmark.pm have a tendency to disengage their brains

The author of the benchmark took the obviously nonsensical results at face
value

He wrote up a detailed analysis of these nonsensical results

2. Benchmark.pm is complex

Here there was a scope problem that was obscured by the use of
Benchmark.pm

The code wasn’t doing what it appeared to be doing

3. Benchmark.pm’s internals are obscure

This tends to inhibit understanding of the absolute numbers that it emits

You tend to compare the relative quantities only

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 116

Vanity, Vanity, all is Vanity
Postscript: In 2005 I gave this class at OSCON

An audience member interrupted to say he had found an obvious way to speed up
letter_histogram

He had benchmarked it and found it substantially faster

His benchmark looked something like this:

 use Benchmark;
 my $t = "some reasonably long string here";
 timethese(-5, { orig => ’orig_letter_histogram($t)’ ,
 mine => ’my_letter_histogram($t)’ ,
 });

 sub orig_letter_histogram {
 my $strdex = (length $_[0])-1;
 $letter_hist{substr($_[0],$_,1)}++ for (0..$strdex);
 }
 sub my_letter_histogram {
 $letter_hist{$1}++ while $_[0] =~ m/(.)//gs;
 }

The following week, I did it right

His suggestion is 250% slower:

 orig histo 11.42 0.03 11.45
 while //gs 37.28 0.03 37.31
 NULL 0.04 0.00 0.04

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 117

Numerical Calculation
 http://www.perlmonks.org/index.pl?node_id=134419

Good day, fellow monks. I’ve got a snippet of code that I’m hoping you can
help me speed up. My code is to find the N-th root of a given number.

 use Math::BigFloat;

 sub Root {
 my $num = shift;
 my $root = shift;
 my $iterations = shift || 5;
 if ($num < 0) { return undef }
 if ($root == 0) { return 1 }
 my $Num = Math::BigFloat->new($num);
 my $Root = Math::BigFloat->new($root);
 my $current = Math::BigFloat->new();
 my $guess = Math::BigFloat->new($num / $root);
 my $t = Math::BigFloat->new($guess ** ($root - 1));
 for (1 .. $iterations) {
 $current = $guess - ($guess * $t - $Num) / ($Root * $t);
 if ($guess eq $current) { last }
 $t = $current**($root-1);
 $guess = $current;
 }
 return $current;
 }

This uses Newton’s method for finding the roots. It produces very accurate
results, provided you increase the number of iterations if you’re dealing with
large numbers and/or large roots. Therein lies the problem.

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 118

Numerical Calculation
What’s Newton’s Method?

Here we want to find sqrt(3)

This is a number x such that x2 - 3 = 0

That’s the x-coordinate of the point where the parabola crosses the x-axis

Make a guess g1

Extend the tangent to the parabola at g1 until it intersects the axis

This is g2, which is a better guess than g1 was

Repeat as desired

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 119

Numerical Calculation

If you want something relatively simple like the 5th root of 100:

 $x = Root(100, 5);

the result is reasonably fast. However, with each iteration, it get progressively
slower. So if you wanted something enormous, like:

 $x = Root(500000, 555);

you could be waiting for ages. If we leave the number of iterations low, the
result will likely be very inaccurate, but as we increase the number of
iterations, each individual iteration gets slower and slower. The only thing I’ve
been able to come up with so far is the comparison of $guess and $current
inside the for loop. I was able to get a bit of a speed boost by doing a string
comparison rather than a numeric comparison. Any suggestions on how to
speed this up?

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 120

Numerical Calculation
There were a whole load of pointless suggestions:

 BTW It seems that using Math::BigFloat methods directly is
 slighly faster then relying on overloaded operations:

 timethese(1000, {
 Methods => sub { Math::BigFloat->new(100)->fmul(Math::BigFloat->new(100)) },
 Operations => sub { Math::BigFloat->new(100) * Math::BigFloat->new(100) },
 });

 Benchmark: timing 1000 iterations of Methods, Operations...
 Methods: 2 wallclock secs
 (1.48 usr + 0.01 sys = 1.49 CPU)
 @ 671.14/s (n=1000)
 Operations: 1 wallclock secs
 (1.63 usr + 0.00 sys = 1.63 CPU)
 @ 613.50/s (n=1000)

This guy just couldn’t leave well enough alone:

 Moreover using subroutine calls should be even more
 faster. That is use Math::BigFloat::OP($num) instead of
 $num->OP.

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 121

Numerical Calculation
 Let me throw around my math skills... Recalling some binary
 math I figured that 10^2 (10 to the power of 2) may be
 simplified into this: 10^2 = 10x10 = 10x(2x2x2+2).

 Notice all the 2’s there? Here’s where the left shift
 operator ’<<’ comes in handy (and it’s pretty fast by the
 way).

 So, every multiplication by 2 could be replaced by a left
 shift by one (in binary it’s equivalent to multiplying by 2
 ;) like this:

 10^2 = 10<<3 + 10<<1; (by the way, this is may not be written
 as 10<<4! :)

 So, I’ve replaced 10x10 by a few left shift operators. The
 key here is to determine how many left shifts will have to be
 performed for given power.

Etc.

Now, if we were programming in assembly language, maybe

(Maybe not)

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 122

Numerical Calculation
You should really check out this thread

It’s a gold mine of bad advice

One guy even threw up his hands:

 Without delving into the internals of Math::BigFloat, I don’t
 see any way to speed this up. Perhaps you could try a
 different approach? A different algorythm maybe?

And that was probably the least worthless suggestion

Except for (ahem) mine

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 123

Numerical Calculation
First, what about this?

as we increase the number of iterations, each individual iteration gets
slower and slower.

Suppose you have two numbers of 8 decimal places each

Say 0.12345678 and 0.23456789

What happens when you multiply them?

You get 0.0289589963907942, which has 16 digits

If you multiply two 16-digit numbers, you get a 32-digit result

Math::BigFloat never throws away any trailing digits

The numbers get longer and longer every time you do a multiplication

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 124

Numerical Calculation
Newton’s method takes a guess and finds a better guess

The number of correct bits in the guess tends to double on each iteration

If the initial guess is good, the new guess is superb

If there were no correct bits to begin with, it wanders around aimlessly

The initial guess in the original code was terrible:

 my $guess = Math::BigFloat->new($num / $root);

For Root(500000, 555) this guesses that the root is 900.9009009

The root is actually 1.02392563097332211627

At x = 900.9, the curve y = x555 - 500000 is extremely steep

The tangent line is almost vertical (it has a slope of about 3.4e1639)

So the ’improved’ guess is almost the same as the original guess

But twice as long!

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 125

Numerical Calculation
Instead of making a lousy initial guess, like this:

 my $guess = Math::BigFloat->new($num / $root);

Make a good initial guess, like this:

 my $guess = Math::BigFloat->new($num ** (1/$root));

This uses the hardware floating-point arithmetic to calculate the right answer...

...to 53 bits of accuracy...

...instantaneously

Then use Newton’s method to get even closer

After 4 iterations, you have 130 decimal places correct

Moral of the story: Stop fussing around with micro-optimizations

Second moral: The world is full of crappy optimization advice

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 126

Crappy Advice
The following appeared on the StLouis.pm web page last year:

 Perl Tip: Use each when iterating through a hash
 table. It’s far better than keys for iterating over large
 hash tables.

Better for what? Curing sciatica?

Supposing the author meant ’faster’, he was wrong

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 127

each vs. keys
This gets the keys all at once, in C:

 for (keys %hash) {
 ...
 }

This gets the keys one at a time, dispatching Perl operations in between:

 while (my $k = each %hash) {
 ...
 }

The purpose of each is to conserve space, not time

You use it when the hash is very large and you don’t want to store all the keys at
once

For example if the hash is tied to a large disk file

Since it is a space-conserving optimization, you would expect it to be slower than
keys

And so it is

Unless you’re also interested in the values

Or unless the keys call causes your program to become memory-bound

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 128

What to Remember

(Antepenultimate slide)

1. Look at the big picture first - think about the project, not the program

2. It’s hard to guess what part of the program matters, so use tools

3. 90% of the runtime is accounted for by 10% of the code

4. The speed of the other 90% of the code hardly matters at all...

...so don’t waste your time on it

5. The Benchmark module is good for answering questions that aren’t worth asking

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 129

Jackson’s Rules
All this was summed up by famous computer scientist Michael A. Jackson

In his "Two rules of when to optimize"

(Principles of Program Design, 1975)

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 130

Jackson’s Rules
1. Don’t do it.

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 131

Jackson’s Rules
2. (For experts only)

Don’t do it yet.
Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 132

Thank You
Questions? Send me mail.

 mjd-tpc-perf+@plover.com

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 133

Bonus Slides
Writing a class is like making a film

Some good stuff ends up on the floor of the editing room

If this class were a DVD, this stuff would be the "special features and deleted
scenes"

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 134

Pod::ParseTree::append

Results:

Before: 4th place

 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 5.90 1.179 1.134 7733 0.0002 0.0001 Pod::ParseTree::append

After: 10th place

 2.22 0.370 0.327 7733 0.0000 0.0000 Pod::ParseTree::append

Note that it’s 2.22% of the new shorter run time

The new append would have been in 16th place in the ’before’ version

End of digression

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 135

System Load
System administrators are interested in system load

This is what is reported by the uptime command:

 7:19pm up 65 days, 7:23, 24 users, load average: 0.22, 0.44, 0.81

And by tools like xload

It is the average number of jobs that are ready to be run

(This omits jobs that are sleeping, waiting for I/O, etc.)

If it exceeds the number of CPUs, then the system is overloaded

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 136

Memory Bound Programs
Here are the values I plotted in the graphs:

 Input Size Wallclock time
 1000 0.10
 2000 0.14
 4000 0.30
 8000 0.62
 16000 1.43
 32000 3.05
 64000 6.19
 128000 12.50
 256000 28.19
 512000 71.69
 1024000 134.87
 2048000 14601.00

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 137

Memory Bound Programs
Here’s the raw data for the last three lines

I made three runs with each size and took the median run time

512 000

 24.91user 0.85system 1:11.69elapsed 35%CPU
 (256major+7597minor)pagefaults 0swaps
 25.09user 0.56system 0:54.91elapsed 46%CPU
 (256major+7597minor)pagefaults 0swaps
 27.62user 0.64system 1:13.82elapsed 38%CPU
 (256major+7597minor)pagefaults 0swaps

1 024 000

 60.38user 1.90system 2:06.18elapsed 49%CPU
 (299major+19082minor)pagefaults 0swaps
 71.49user 1.80system 2:14.87elapsed 54%CPU
 (256major+15156minor)pagefaults 0swaps
 74.08user 1.56system 2:21.39elapsed 53%CPU
 (256major+15156minor)pagefaults 0swaps

2 048 000

 251.00user 120.34system 4:38:10elapsed 2%CPU
 (487major+1065900minor)pagefaults 0swaps
 214.70user 86.19system 3:01:45elapsed 2%CPU
 (486major+803641minor)pagefaults 0swaps
 256.03user 98.89system 4:03:21elapsed 2%CPU
 (486major+880664minor)pagefaults 0swaps

Notice how the user time increases moderately and the system time explodes

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 138

What’s Memoization?
Memoization replaces a function f with a stub, m

m manages a cache

If the desired value of f is in the cache, it is returned

(Cache hit)

If not, f is called and the value is stored in the cache

(Cache miss)

It is a speed optimization - trades space for time

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 139

Walt’s Dilemma
My friend Walt wrote a program to solve a math puzzle

Find ’excellent numbers’ like 190476 or 48

4762 - 1902 = 226576 - 36100 = 190476

82 - 42 = 64 - 16 = 48

Walt’s program had

 sub square { return $_[0] * $_[0] }

Since square was called a lot, he memoized it

Now the program was slower

Here’s why

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 140

How Long Does It Take?
Question: Will the memoized function be faster than the original?

It depends on:

How long the original function f takes

How often f is actually called

How long the cache management takes

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 141

Cache Hit Rate
Suppose we make some calls to m, the stub

We find that 37% of the time, the desired value is already in the cache

The other 63% of the time, the real f must be called

We have a cache hit rate of 0.37

Hit rate is always between 0 and 1

1: A cached value is available every time; f is never called

0: The cached value is never there

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 142

Time to Call a Memoized Function
Let’s suppose we make N calls to m

Suppose the cache hit rate is h

Cache miss rate is 1-h

The real f gets called about N(1-h) times

Suppose the average time for f to execute is f

Time spent in f is N(1-h) f

Suppose the average time to manage the cache is K

Time spent managing the cache is NK

Total time spent for N calls: N(1-h) f + NK

Average time per call: (1-h) f + K

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 143

Time Savings
h is the hit rate

f is the time it takes to call the original function

K is the average cache management overhead

Average time spent per call to m: (1-h) f + K

The average time for the unmemoized function is f

Time saved (per call) by memoizing: f - (1-h) f - K

Equals hf - K

hf is the benefit. K is the cost.

We want hf > K

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 144

For Example...
Time saved is hf - K

High cache hit rate h leads to larger savings

Large function call overhead f leads to larger savings

Large cache management overhead K leads to smaller savings

Typically, h and f are not under anyone’s control

The best strategy for the author of Memoize is to make K as small as possible

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 145

For Example...
We win if hf > K

Suppose hit rate h is 0 ?

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 146

For Example...
We win if hf > K

Suppose K is bigger than f

Buf hf is smaller than f

We lose!

We can tolerate large cache management overhead...

But only if the function takes a really long time

If f is real big, it’s easier to get a win

In spite of a big K

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 147

For Example...
We win if hf > K

Suppose f is really really small

hf is even smaller

Perhaps close to zero

We can’t win in such a case

As Walt unfortunately found out

In Walt’s program, f was the time to do one multiplication

This is a budget of time that K must not exceed

If K does even one multiplication, it blows the budget

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 148

Devel::DProf

Here’s the contents of tmon.out

First there’s a header section with metainformation:

 #fOrTyTwO
 $hz=100;
 $XS_VERSION=’DProf 20000000.00_01’;
 # All values are given in HZ
 $over_utime=11; $over_stime=1; $over_rtime=12;
 $over_tests=10000;
 $rrun_utime=746; $rrun_stime=7; $rrun_rtime=800;
 $total_marks=33941

$hz is the clock resolution of the system

Here one ’Hz’ is 1/100 second

The $over_ variables try to record overhead of checking the clock

(u == user time, s == system time, r == real (wallclock) time)

For example, 11/10000 user-seconds per call

$rrun_ are the total times consumed by the sample run

$total_marks is the total number of subroutine entries and exits

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 149

Devel::DProf

 & 1b Mail::Header fold_length
 + 1b
 - 1b
 ...
 & 21 Mail::Header _fmt_line
 + 21
 & 22 Mail::Header _tag_case
 + 22
 - 22
 + 1b
 - 1b
 & 23 Mail::Header _fold_line
 + 23
 @ 0 0 4
 - 23
 - 21
 & 24 Mail::Header _insert
 + 24
 - 24
 + 21
 + 22
 - 22
 + 1b
 - 1b

& lines assign a new ID number to a subroutine

+ and - indicate that the subroutine was entered or exited

@ lines indicate that the indicated number of ticks elapsed since the last @ line

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 150

parse_text

 if (/^([A-Z])<([^<>]*)>$/) {
 $seq = Pod::InteriorSequence->new(
 -name => $1,
 -ldelim => "<", -rdelim => ">",
 -file => $file, -line => $line
);
 $seq->append($2);
 $seq->nested($seq_stack[-1]) if @seq_stack > 1;
 $seq_stack[-1]->append($expand_seq
 ? &$xseq_sub($self, $seq)
 : $seq);
 }

What was this about?

We’re building a tree of Pod::InteriorSequence nodes

In X<Y<...>>, node Y is a child of node X

The ->nested call installs a pointer to X into Y

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 151

Slide Manufacturing
make-slides takes a single file with slides

Slides are separated by rows of hyphens

Slides are written out to a series of separate text files

text2slide is run on each of these files

There are some other features as well

Let’s see what we can do with it

Unfortunately it has few subroutines, so Devel::DProf isn’t much help

 Total Elapsed Time = 60.50918 Seconds
 User+System Time = 0.799279 Seconds
 Exclusive Times
 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 6.26 0.050 0.050 2 0.0250 0.0248 main::BEGIN
 0.00 0.000 -0.000 2 0.0000 - Exporter::import
 0.00 0.000 -0.000 2 0.0000 - File::Glob::BEGIN
 0.00 0.000 -0.000 1 0.0000 - strict::import
 0.00 0.000 -0.000 1 0.0000 - strict::bits
 ...

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 152

Slide Manufacturing
SmallProf does produce some useful results, however

Here’s the data sorted by CPU time:

 count wall tm cpu time line
 83 73.67689 31.70000 287: system $cmd;
 1960 0.637309 0.340000 69: if (/^(\t|\s{5})/ && !($DIVERSION{active}
 1896 0.659382 0.280000 94: if (/^-{12}/ || /^={32}/) {
 1960 0.307705 0.240000 68: s{%(\w+)%}{exists $macro{$1} ? $macro{$1} :
 1813 0.330660 0.210000 210: $accumulated .= $_ unless $skip_this;
 1960 0.275886 0.200000 83: if ($MACROS && s/^\#MACRO\#\s+//) {
 1960 0.337091 0.180000 67:while (<STDIN>) {
 1960 0.250034 0.180000 91: next if /^\#{3}/;
 1813 0.290792 0.180000 202: if ($DIVERSION{active} && (/^(\#*|) /
 1897 0.284703 0.170000 92: last if /^-{50,}END/;
 524 0.464508 0.150000 74: $length -= 3 while / \[\w\[| \]\w\]/xg;
 524 0.233224 0.100000 73: $length -= 2 while / \[\[| \] \]/xg;

Clearly, run time is dominated by line 287

 285 my $cmd = qq{$TXT2HTML $enc
 --setvar MJD_FIRST_FILE=$firsthtml
 --setvar MJD_LAST_FILE=$lasthtml
 --setvar MJD_NEXT_FILE=$nexthtml
 --setvar MJD_PREV_FILE=$prevhtml
 --setvar MJD_SLIDE_NUMBER=$slideno
 --title ’$title’ $slide > $html};
 286 # print STDERR "Command: $cmd\n";
 287 system $cmd;

There’s probably not too much we can do about this

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 153

Mail Folder Analyzer Revisited
Now that we’ve sped up the analyzer by a factor of 6, let’s see what else we can do

We’ll rerun the test under the profiler

 % perl -d:DProf mfa2.pl MBOX > /dev/null
 % dprofpp

 Total Elapsed Time = 1.492102 Seconds
 User+System Time = 1.302102 Seconds
 Exclusive Times
 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 63.7 0.830 0.829 109 0.0076 0.0076 main::letter_histogram
 13.8 0.180 0.180 1 0.1800 0.1800 Mail::Util::read_mbox
 4.61 0.060 0.130 3 0.0200 0.0432 main::BEGIN
 4.61 0.060 0.887 109 0.0005 0.0081 main::handle_message
 2.30 0.030 0.030 1 0.0300 0.0300 warnings::BEGIN
 2.30 0.030 0.040 5 0.0060 0.0080 Mail::Util::BEGIN
 0.77 0.010 0.010 3 0.0033 0.0033 AutoLoader::BEGIN
 0.77 0.010 0.010 2 0.0050 0.0050 main::pairify
 0.77 0.010 0.010 4 0.0025 0.0025 vars::BEGIN
 0.00 0.000 -0.000 3 0.0000 - strict::import
 0.00 0.000 -0.000 3 0.0000 - strict::bits
 0.00 0.000 -0.000 2 0.0000 - Exporter::import
 0.00 0.000 -0.000 1 0.0000 - warnings::import
 0.00 0.000 -0.000 1 0.0000 - warnings::register::import
 0.00 0.000 -0.000 2 0.0000 - warnings::register::mkMask

We see that letter_histogram is run 109 times at 7.6 ms each

This is 64% of the remaining run time

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 154

The Innermost Loop
 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 63.7 0.830 0.829 109 0.0076 0.0076 main::letter_histogram

This is a typical situation

Often, a program is structured as a series of nested loops

For example, this program:

For each input file,

For each message in the file,

For each character in the file

Append it to the histogram.

The code inside the innermost loop gets run many, many times

Here, once for each character in the entire input

Other parts of the program are run much less frequently

A small speedup in this innermost loop can have a disproportionate effect on
run time

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 155

The 64% Question
 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 63.7 0.830 0.829 109 0.0076 0.0076 main::letter_histogram

I said "This is 64% of the remaining run time"

Why 64% and not 63.7% ?

The total run time was about 1.22 CPU seconds

The resolution of the measurements was only 0.01 second

The resolution of the %Time column is therefore 0.81%

It’s like announcing that "85.714% of surveyed respondents prefer Perl to Python"

Sounds really precise

But what you actually mean is "6 out of 7"

That 63.7% actually means "83 out of 122"

Or perhaps "somewhere between 62.9 and 64.5%"

The percentages are reported with eight times more precision than the measurements
actually have

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 156

The 64% Question
Scientists and engineers are trained to deal with this

They know that 3 meters is different from 3.000 meters

One was measured to a precision of 1 meter, the other to a precision of 1 mm

They get training in how to calculate with imprecise measurements

How to represent and understand the error ranges

How to present the answers without lying

Computer programmers are not usually so trained

I would like to see CS curricula revised to fix this

I would like to see computer ’science’ as a real science

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 157

The 90-10 Rule In Action
Counting modules, the program has 2,848 lines of code

(I didn’t count whitespace, comments, POD, lines with just braces, etc.)

 Subroutine %time cum. lines cum. cum%

 M::H::_fold_line 30.1 30.1 48 48 1.7
 M::H::_fmt_line 24.6 54.7 34 82 2.9
 letter_histogram 12.2 66.9 3 85 3.0
 M::H::_insert 6.6 73.5 22 107 3.8
 M::H::extract 5.8 79.3 16 123 4.3
 M::H::_tag_case 5.3 82.6 6 129 4.5
 M::H::fold_length 5.3 87.9 15 144 5.1
 M::H::fold 3.7 91.6 13 157 5.5
 M::U::read_mbox 2.4 94.0 21 178 6.3
 M::I::BEGIN 1.4 95.4 18 196 6.9
 ...

7% of the code accounts for more than 95% of the run time

5% of the code accounts for more than 80% of the run time

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 158

The 90-10 Rule In Action
Perhaps counting modules biased the numbers?

 Subroutine time %time cum. lines cum. (%)
 letter_histogram .76 79.2 79.2 3 3 5.9
 BEGIN .10 10.4 89.6 13 16 31.4
 handle_message .09 9.4 99.0 7 23 45.1
 report .01 1.0 100.0 20 43 84.3
 from_histogram .00 0.0 100.0 3 46 90.2
 pairify .00 0.0 100.0 5 51 100.0

No, we still have 6% of the code accounting for 80% of the run time

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 159

Error Variation
I ran five identical runs of the same program on the same input:

 User+System Time = 1.252102 Seconds
 User+System Time = 1.260666 Seconds
 User+System Time = 1.280666 Seconds
 User+System Time = 1.319948 Seconds
 User+System Time = 1.309948 Seconds

That’s more than 5% variation

 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 65.4 0.820 0.819 109 0.0075 0.0075 main::letter_histogram
 63.4 0.800 0.799 109 0.0073 0.0073 main::letter_histogram
 62.4 0.800 0.799 109 0.0073 0.0073 main::letter_histogram
 65.1 0.860 0.859 109 0.0079 0.0079 main::letter_histogram
 64.8 0.850 0.849 109 0.0078 0.0078 main::letter_histogram

Ditto

Conclusion: Don’t put any faith in the exact numbers

Corollary: If someone tells you that X is 5% faster than Y, ignore them

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 160

Error Variation
 Date: Tue, 1 Jan 2002 14:46:06 +0100
 Subject: Re: How can I determine a 0 byte File
 Message-Id: <a0seef$668$05$1@news.t-online.com>

 timethese($count, {
 ’stat’ => sub { (stat($filename))[7] },
 ’z’ => sub { -z $filename },
 ’s’ => sub { -s $filename },
 });

 Benchmark: timing 100000 iterations of s, stat, z...
 s: 48 wallclock secs (11.49 usr + 29.25 sys = 40.74 CPU)
 @ 2454.65/s (n=100000)
 stat: 53 wallclock secs (14.21 usr + 30.65 sys = 44.87 CPU)
 @ 2228.91/s (n=100000)
 z: 50 wallclock secs (11.66 usr + 29.76 sys = 41.42 CPU)
 @ 2414.35/s (n=100000)

 Stat indeed seems to be a little slower...

I think that’s the wrong conclusion

 ...but then, if -s is faster than -z, the whole difference
 may be within the error margin.

I think that’s the right conclusion

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 161

Mail Folder Analyzer Revisited
Back to the MFA

The profiler says that main::letter_histogram is consuming most of the CPU
time

 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 63.7 0.830 0.829 109 0.0076 0.0076 main::letter_histogram
 13.8 0.180 0.180 1 0.1800 0.1800 Mail::Util::read_mbox

A 20% speedup in this one function would reduce the program’s run time by 1/8

 sub letter_histogram {
 my $strdex = (length $_[0])-1;
 $letter_hist{substr($_[0],$_,1)}++ for (0..$strdex);
 }

Perhaps loop over the characters directly

Instead of looping over 0 .. $strdex and indexing the string?

 sub letter_histogram {
 $letter_hist{$_}++ for split //, $_[0];
 }

 Before After

 real 0m2.739s real 0m5.379s
 user 0m1.270s user 0m2.410s
 sys 0m0.040s sys 0m0.040s

Well, that didn’t work

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 162

letter_histogram

 sub letter_histogram {
 my $strdex = (length $_[0])-1;
 $letter_hist{substr($_[0],$_,1)}++ for (0..$strdex);
 }

Perhaps we could get a speedup by avoiding the repeated array lookup on @_?

 sub letter_histogram {
 my $msg = shift;
 my $strdex = (length $msg)-1;
 $letter_hist{substr($msg,$_,1)}++ for (0..$strdex);
 }

Cost: shift plus an extra copy of the data

 Before After

 real 0m1.277s real 0m1.236s
 user 0m1.250s user 0m1.220s
 sys 0m0.020s sys 0m0.010s

No significant difference

Perhaps it really is .04 ms faster

But who the heck cares?

Other things I tried:

Use @letter_hist instead of %letter_hist

Call letter_histogram once on entire mbox instead of on each message

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 163

Good Advice
Actually in 1998 I had a little more to say:

Worrying about optimization at this level is just silly. Write the
program. If it is unacceptably slow for your real application, then

benchmark it, and then look at ways to make the slow parts faster.

I think this is the best general advice you can get about optimization

Hence this class

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 164

Good Advice
Here’s some advice that is more Perl-specific

If you’re worried about the slowness of two opens and a rename, why
aren’t you worried about the much greater slowness of perl?

It’s important to keep these things in perspective

If you’re really worried about the cost of a single rename, you are using the
wrong language

 int main(void) { my $total;
 int i, j; for (0 .. 999) {
 long total; $total = 0;
 for (i=0; i<1000; i++) { for my $j (0 .. 999) {
 total = 0; $total += $j;
 for (j=0; j<1000; j++) { }
 total += j; }
 } print $total, "\n";
 }
 printf("%ld\n", total);
 }

 real 0m0.071s real 0m2.493s
 user 0m0.060s user 0m2.340s
 sys 0m0.000s sys 0m0.020s

The C version was 35 times faster

Next Copyright © 2003 M. J. Dominus

Next Making Programs Faster 165

Good Advice
Donald E. Knuth, a famous wizard, is fond of saying:

Premature optimization is the root of all evil.

Here’s some context:

There is no doubt that the "grail" of efficiency leads to abuse.
Programmers waste enormous amounts of time thinking about, or

worrying about, the speed of noncritical parts of their programs, and
such attempts at efficiency actually have a strong negative impact

when debugging and maintenance are considered. We should forget
about small efficiencies, about 97% of the time. Premature

optimization is the root of all evil.

He continues:

Yet we should not pass up out opportunities in that critical 3%. Good
programmers will not be lulled into complacency by such reasoning,
they will be wise to look carefully at the critical code; but only after

the critical code has been identified.

Next Copyright © 2003 M. J. Dominus

