Next Making Programs Faster 1

Making Programs Faster

Benchmarking, Performance Tuning, and Caching

<
N .

Mark Jason Dominus
Plover Systems Co.
nj d- t pc- per f +@l over. com

v1.2 (May, 2003)

Next PR

Copyright © 2003 M. J. Domint

Next Making Programs Faster 3

Performance TuningisHard

® You want your program to be faster
O So you guess what it might be spending a lot of time on
O Then you guess that a different design will spend less time
O Then you implement your guess

® Then you find out that you were wrong
O There are no experts here
O Everyone guesses wrong

® Guessing doesn’t work

Next ﬁ’;@ 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 2

Making Programs Faster
® What we’'ll do:
O Basic concepts, example optimizations
O Using profiling tools
B Mail folder analyzer

B perldoc

O Blunders

® Along the way:
O Building custom profiling tools
O What not to worry about

O More blunders

Next ﬁ’;@ 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 4

Performance TuningisHard
® With some things, a seat-of-the-pants approach works fine
O Not performance tuning
® You must be scientific and methodical
@ |t's easy to mess up

® This class is aboubols andmeasurement

Next %Q 7 Copyright © 2003 M. J. Domint

Next Making Programs Faster 5

Schwartzian Transform

® Sort list of items by someon-apparent
feature

® Example: Sort filenames by last-modifig
date

® The obvious method:

sort { -M$bh <=> -M $a }
(readdir D);

® |t calls- Mmover and over on the same fil

® |dea: Maybe we can speed this up as
follows:

1. Construct data structure with both
names and dates

2. Sort by date

3. Throw away dates

Next \LQ 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 7

Schwartzian Transform

@orted_nanes =
map { $_->[0] }
sort { $b->[1] <=> $a->[1] }
mp { [$, -M$_] }
readdir D;
® This is more complicated and more work than the original code:
sort { -M$b <=> -M $a } readdir D;
® |s it really faster?
® To find out, we run both versions on the same data
O We measure the time taken by each one
® This is called d@enchmark

Next $&7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 6

Schwartzian Transform

@anes = readdir D

natmel natme2 name3

@anes_and_dates =

map { { NAME => $_, DATE=>-M$_} }

@anes;
WAME | namel | | HAME | name? || MAME | natne3
DATE | date7 || DATE | dated || DATE | datet

@orted_nanes_and_dates =
sort { $b->{DATE} <=> $a->{DATE} }
@anes_and_dat es;

WAME | name6 | | HAME | name8 || MAME | name2
DATE | dawel || DATE | dme2 || DATE | dared
@orted_nanes =
map { $_->{NAME} }
@orted_nanes_and_dat es;
namet name8 name2
Next \LQ7 Copyright © 2003 M. J. Domini
Next Making Programs Faster 8

Schwartzian Transform

® On a sample of 11,632 files:

User Sys Total
Direct 0.80 2.55 3.35
Schwartzian 1.14 0.39 1.53

® This says that the Schwartzian version was indeed about 54% faster for this ¢

Next \gQ 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 9

Time
® The computer has several kinds of time
O Wallclock time is actual elapsed time

O On a timesharing system, this is rarely the amount of time the process ac
spent working

O It shares the processor with the OS and with other processes

® Of the wallclock time, some was spent executing instructions in the process’s
program

O For example, copying data around or doing tests

O This is theuser tine

® Some time was spent by the OS executing OS instructions at the program'’s r
O For example, fetching mtimes, performing I/0, and allocating memory

O This is thesystem ti ne

® user tine+systemtinme =CPU time <= wallclock time

Copyright © 2003 M. J. Domint

Next (ﬂgQ 7

Next Making Programs Faster 11

" Optimizations"
® The world is full of dumbassed 'optimizations’ and 'benchmarks’
® We'll see several today
® Here's one | found while researching the Schwartzian Transform
® The goal here is to do a case-insensitive sort
sort { lc $acnp lc $b } @tuff;

® Here's what was suggested:

Date: Sat, 15 Mar 1997 00: 55: 47 GMI
Subj ect: Re: Sorting help
Message- | d: <3329eef d. 140372364@ews. 0z. net >
The *drumrol | * Schwartzi an Transfornl
@orted = map {$_->[0]

sort {$a->[1] cnp $b->[1]}

map {[$_, lc $_1}

@tuff;

® Bol df ace code is operations that were added

Next PR

Copyright © 2003 M. J. Domint

Next Making Programs Faster 10

user time +systemtinme = CPU time
Before
sort { -M$bh <=> -M$a } readdir D

After

@orted_nanes =
map { $_->[0] }
sort { $b->[1] <=> $a->[1] }
mp { [$_, -M$_] }
readdir D

® - Mandr eaddi r consume mostly system time

® Everything else is pure user time

® The goal of the Schwartzian Transform is to reduce the numbetsof
O But optimization is always a tradeoff
O The cost is a lot more user-mode processing

O We see this in the timing outputs

User Sys Total
Direct 0.80 2.55 3.35
Schwartzian 1.14 0.39 1.58

® The Schwartzian transform does 43% more processing

O But it wins by asking the kernel for 84% less service

Next ?)Q 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 12

" Optimizations"
@orted = map {$_->[0]}
sort {$a->[1] cnp $b->[1]}
mp {[$_ lc $]}
@tuff;

® Here are the benchmark results on a list of 11,632 strings:

User Sys Total
Direct 0.23 0.00 0.23
Schwartzian 0.85 0.08 0.93
Next 1@ 7 Copyright © 2003 M. J. Domint

Next Making Programs Faster 13 Next Making Programs Faster 14

"But | want a pony!" " Optimizations"
User Sys Total sort { lc $acnp lc $b } @tuff;
Direct 0.23 0.00 0.23
Schwartzian 0.85 0.08 0.93 @orted = map {$_->[0]}
sort {$a->[1] cnp $b->[1]}
. . mp {[$_, lc $_]}
Performance tuning iaways a tradeoff Grutt!
® Never say "I'll use the Schwartzian Transform because it's faster" ® The 'benefit’ here was to reduce the numberwbperations
O That's an immature view of value O The cost was to introduce array reference lookup operations in their plac

® That's what little kids are thinking when they say O And two extra scans over the list

Dad, can | have a pony? O And some memory allocation
) ’

. .) O But he got his pony!
® The poor little kid sees the benefit, but not the cost

® More ponies later
® Always remember to ask

What am | spending and what am | getting i.. Next %7 Copyright © 2003 M. J. Domin
return?
® Unfortunately, the cost-benefit ratio for the pony is prohibitively large
Next 7>Q 7 Copyright © 2003 M. J. Domint
Next Making Programs Faster 15 Next Making Programs Faster 16

Wallclock Time A Wallclock Time

® Wallclock time is the most natural

® |f a program needs to do a certain amount of computation, that consumes a ¢
way to measure performance

amount of CPU time

® Because you want the program to

O The amount of CPU time will probably not vary too much for a particular
finish sooner rather than later

® However, wallclock measurements can vary a lot from one run to another
® But measuring wallclock time

directly is very tricky O It all depends on what else is going on at the same time

O Operating systems like Unix
and Windows do pre-emptive
multitasking

O The amount of wallclock time might vary enormously

O Variations might be unrelated to the program you are examining

O At any moment the OS might ® For this reason we tend to concentrate on measuring CPU, which is easier
put any process to sleep for a long time

O Processes go to sleep when the OS wants to do something else Next </>Q 7 Copyright © 2003 M. J. Domin

O Sleeping processes consume wallclock time but not CPU time

Next L7 Copyright © 2003 M. J. Domini

Next

Wallclock Time

® Unfortunately, measuring CPU isn't always what you want

Making Programs Faster 17

® Consider a program with high wallclock time but low CPU time
O This program is spending a lot of time waiting around
O That may be unavoidable

O Reducing the CPU usage of this program may not reduce its wallclock us
proportionally

O It may be computing faster but spending the same amount of time waitin
around

Next PR

Copyright © 2003 M. J. Domint

Next Making Programs Faster 19

I/0 Bound Programs
® To speed upebgr ep, we would need to address the network latency time
® [t is unlikely that altering the search itself will produce much of an effect
® The benchmarks bear this out:

% ./ webgrep perl http://wwm. perl.com

real 0onB. 456s
user onD. 720s
sys onD. 070s

® CPU time accounted for only about 23% in this simple case

% ./ webgrep perl http://www perl.coml http://ww. perl.com \
http://ww. perl.conl http://ww. perl.conml \
http://ww. perl.conm’ http://ww.perl.com

real onml5. 599s
user onD. 840s
sys onD. 110s

® 6% in this case

® Trying to speed up an I/O bound program by reducing the amount of compute
won't work

® Alternative:

O Parallelize 1/0 (asynchronous I/O; move it to subprocesses, etc.)

Next f’;Q 7

Copyright © 2003 M. J. Domint

Next

Wallclock Time

usage: webgrep PATTERN urls...
use LWP::Sinple 'get’;
ny $pat = shift;
ny @ontexts;
for ny $url (@RGV) {
ny $doc = get($url);
unl ess (defined $doc)
warn "Coul dn’t fetch $doc;
next;

Making Programs Faster 18

ski ppi ng\ n";
}

whil e ($doc =~ nmi $pat/oig) {
push @ontexts, substr($doc,
}

print join("\n-------- \n", @ontexts),

pos($doc) - 30, 60);

"
® This program’s wallclock time is dominated by the calj¢o
O get spends most of its time waiting for messages to travel across the nel

O We say that the program|i&D bound

Next f&Q 7 Copyright © 2003 M. J. Domini

Next Making Programs Faster 20

I/0 Bound Programs
® CGI application performance is another great example of this
® When the user submits a form, the following happens:
1. The browser sets up a TCP connection to the server
2. It sends the form contents
3. The server starts a new CGI process
4. The process loads the CGI program and compiles it
5. The CGI program runs
6. The server gathers the CGI output and constructs a response
7. It sends the response to the browser
8. The connection is torn down
9. The browser renders and displays the results
® All this typically takes a couple of seconds
® Speeding up the CGI program itself only speeds up step 5

® This probably has a minimal effect on the user's experience

Next f’;Q 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 21

CPU Bound Programs

® In contrast, consider this program:

for nmy $i (1 ..
$ $i /

100000) {
ny $n = 100;

ny $s = squar e_rbot($n);
sub square_root {
ny $tol erance = 0.000001;
ny $g = ny $n = shift;
while (abs($g * $g - $n) >= $tolerance) {
$g = ($n/$g + $9)/2;
}
$g;
real ontl0. 211s
user 0on®. 570s
sys OonD. 010s

® This program spent 94% of its life using the CPU

O Reducing the amount of computation by even 10% is likely to have a
significant effect on the wallclock time

® We say such a program@U bound

Next HR7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 23

Memory Bound Programs

100000

Predicted: n login)
hserved =

10000 — =

Lo00 — -

100 — =

10 =

1k -

0.1 - =

0.01
256 1024 4095

16384 68536 262144 1.04856e%06 4.1943e+
® What happened here?
® 1024000 items fit into real memory; 2048000 didn’t
O The OS had to start swapping pages to disk
O Program run time was dominated by the swapping time
® For large input lists, this programrigmory bound

O Its slowness is caused not by excessive computation but by excessive m
usage

O Performance will be most improved by reducing memory usage

Next ﬁ‘;@ 7 Copyright © 2003 M. J. Domint

Next Making Programs Faster 22

Memory Bound Programs

® Some programs do relatively little computation or I/O but are slow anyway
® Consider this simple program:

print sort <>;
® Theoretically, thesort runs inO(n log n) time, on average

O That means that if the input size doubles, the run time should be a little n
than twice as long

1000

Predicted: n logini
Opserved =

100 —

0.01
256 1024 4096

16384 65536 Z62144 1.04858e4

® From this we might extrapolate that 2048000 items will take about 283 secon

® Actually it took 14,601 seconds

Next ?)Q 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 24

Simple Measurement Tools

® Most Unix systems come with a command cailede
® For quick estimates of entire programs, thee command is handy

%time |s

#Bl GVESS# PENN YAPC_16. j pg gym phot os
real OnD.858s
user 0onD. 130s

sys onD. 230s
@ Often this is built into the shell; theé me program is different:

% /usr/bin/time |s

#Bl GVESSH# PENN YAPC_16. j pg gym phot os

0. 13user 0.23system 0: 00. 86el apsed 41%CPU
(Oavgt ext +Oavgdat a Omaxr esi dent) k
Oi nput s+0out put s (130maj or +24ni nor) pagef aul t s Oswaps

® 41%CPU here is theCPU utilization
O It's just CPU time divided by wallclock time

® Most of the other information is provided by the r usage system call
O Not all systems provide all the possible information

O Hence th@out put s result on my system

Next PR

Copyright © 2003 M. J. Domint

Next Making Programs Faster 25 Next Making Programs Faster 26

time() Ti me: : Hi Res
® Wallclock time is measured by Perl’s builttinne() function: ® Since 5.7.2, Perl has come with there: : H Res module
use LWp::Sinple "get’; O Ti ne: : H Res overloads i ne andsl eep to have finer resolution
ny $url= shift;
ny $start = time(); - ,)
ny $doc = get($url); ﬂ:: ‘Il_'m Sl}—iﬁpRleg tg?:re
ny $elapsed = tinme() - $start; $ur|=”shift' '
print "$el apsed second(s) el apsed.\n"; g $start = ti He()'
ny $doc = get($url);
2 second(s) el apsed. ny $elapsed = tinme() - $start;

@ |t returns the amount of time that has elapsed since the beginning of 1970 print "Selapsed second(s) elapsed.\n":

1.49982798099518 second(s) el apsed.

® By default, the resolution ofi ne is only one second) .
® Tine:: H Res is also available from CPAN

® Relateds~T variable contains the time at which the program started) . . .
@ |t also provides high-resolution versionssokep andal ar m

print "Program has been running for ",

tinme() - $ T, " second(s).\n"; O Also other high-resolution time-related functions
<) :
Next O Copyright © 2003 M. J. Domint Next L7 Copyright © 2003 M. J. Domini
Next Making Programs Faster 27 Next Making Programs Faster 28
times() Simple Benchmarker
® CPU time is measured with the builttinnmes() function substr($s, 0, 3) = "abc"
($u, $s, $cu, $cs) = tines(); $s =~ s/...labc/s
® $u andss are the user and system CPU times consumed by this process ® Which is faster?
® $cu andscs are the CPU time consumed by descendant processes of this one my $N = shift || 1000000;
ny $s = shift || "The quick brown fox junps over the lazy dog";
O (These are unavailable on Windows systems) my (Ssu, $ss) = times:
for (1 .. $N) { substr($s, 0, 3) = "abc" }
busyl oop D ny ($eu, $es) = tines;
use Tine::H Res "tine’; my ($tu, $ts) = ($eu - $su, $es - $ss);
($parent _run, $child_run) = @RGY nmy $total = $tu + $ts;
$start = ting; printf "920s 9%.2f 9%.2f 9%.2f\n", “"substr", $tu, $ts, $total;
until (time >= $start + $parent_run) {
Busy | oop ny ($su, $ss) = tines;
J for (1 .. $N) { $s =~ s/.../abc/s}
if (fork) { # parent ny ($eu, $es) = tines;
wai t;) ny ($tu, $ts) = ($eu - $su, $es - $ss);
} else {) # child nmy $total = $tu + $ts;
$start = tine; . printf "920s 9%.2f 9b.2f %.2f\n", "regex", $tu, $ts, $total;
until (tinme >= $start + $child_run) {
Busy | oop ® The output:
exit;

substr 5.04 0.01 5.05

}
printf (<<EOF, times()); regex 5.71 0.00 5.71

u: %2f s: %2f
cu: %2f cs: % 2f

ECF Next f&Q 7 Copyright © 2003 M. J. Domint

% ./ busyl oop 6 2
u: 5.11 s: 0.88
cu: 1.61 cs: 0.40

® Most benchmarking tools are based ones

Next f&Q 7 Copyright © 2003 M. J. Domini

Next Making Programs Faster 29

Simple Benchmarker

5.04 0.01 5.05
5.71 0.00 5.71

substr
regex

® Looking at this output, we might conclude that¢hest r was 11.5% faster than
the regex

® But something important is missing from this output

® The benchmark apparatus itself is biasing the results
ny ($su, $ss) i mes;

for (1 .. $N)

ny ($eu, $es) tines;

ny ($tu, $ts) ($eu - $su,

ny $total = $tu + $ts;

printf "9%0s 9%.2f 9%.2f %.2f\n",

t
}

=

$es - $ss);

"NULL", $tu, $ts, $total;

® Now the output is:

NULL 1.24 0.00 1.24
substr 5.10 0.01 5.11
regex 5.69 0.00 5.69

® The time actually spent doirgibst r was about 3.87 seconds
® The time actually spent doing@gex was about 4.45 seconds

® Thesubstr is actually more like 13% faster

Next f&Q 7 Copyright © 2003 M. J. Domint

Next Making Programs Faster 31

Benchmar k. pm
® | don't useBenchnar k. pmany more
® That's for several reasons

® Here’s the results of five consecutive runs of the same benchmark

regex: (7.79 usr + 0.01 sys = 7.80 CPU)
substr: (7.34 usr + 0.02 sys = 7.36 CPU)
regex: (8.02 usr + 0.00 sys = 8.02 CPU)
substr: (7.04 usr + 0.00 sys = 7.04 CPU)
regex: (7.95 usr + 0.01 sys = 7.96 CPU)
substr: (7.63 usr + 0.00 sys = 7.63 CPU)
regex: (8.28 usr + 0.01 sys = 8.29 CPU)
substr: (7.40 usr + -0.01 sys = 7.39 CPU)
regex: (8.04 usr + -0.03 sys = 8.01 CPU)
substr: (6.92 usr + 0.00 sys = 6.92 CPU)

® Problem #1: The individual measurements vary by up to 7%
® Problem #2: Some of the tests are running backwards in time

O I've also seen:

null: -1 wallclock secs (-0.07 usr +
@-16666666. 67/ s (n=1000000)

0.01 sys = -0.06 CPU)

Next fng 7 Copyright © 2003 M. J. Domini

Next Making Programs Faster 30

Benchmar k. pm
® Perl comes with a benchmarking module caieschnar k
® The previous slide’s benchmark looks like this:

use Benchnark;
ny $N = shift ||
ny $s = shift ||
timet hese($N,
{ substr => sub { substr($s, 0, 3) = "abc" },
regex => sub { $s =~ s/.../abc/s},

1000000;
"The quick brown fox junps over the |azy dog";

regex: 7 wallclock secs
(7.85 usr + 0.00 sys = 7.85 CPY
@ 127388. 54/ s (n=1000000)

substr: 7 wallclock secs
(8.24 usr + 0.00 sys = 8.24 CPY

@121359. 22/ s (n=1000000)

® Benchnar k says that the regex is about 5% faster

O It tries to do its own adjustments for error

Next (ngQ Z

Copyright © 2003 M. J. Domint

Next Making Programs Faster 32

Benchmar k. pm

® Problem #3:
regex substr
Benchnar k. pm 8.01 7.36
Handwritten 5.69 5.11

® Which one is closer to the truth?

® Here are five consecutive runs of the handwritten benchmark:

NULL 1.23 0.00 1.23
substr 5.07 0.00 5.07
regex 5.71 0.00 5.71
NULL 1.24 0.00 1.24
substr 5.07 0.00 5.07
regex 5.69 0.00 5.69
NULL 1.23 0.00 1.23
substr 5.07 0.00 5.07
regex 5.71 0.00 5.71
NULL 1.23 0.00 1.23
substr 5.07 0.00 5.07
regex 5.69 0.00 5.69
NULL 1.25 0.00 1.25
substr 5.05 0.00 5.05
regex 5.68 0.00 5.68

® Here the variation is less than 1%

@ | find that | believe these results more ti@anchnar k's

Next (ngQ Z

Copyright © 2003 M. J. Domint

Next Making Programs Faster 33

The Uncertainty Principle

® Heisenberg said that it's impossible to measu
something without altering the measurement

® That is certainly true of benchmarking

® Every benchmark introduces some bias into tl
thing it purports to measure

® You can try to minimize this in at least two wa
O One way is to make the benchmark
apparatus as simple and as lightweight a:
possible

O Then the effects will be small

O Or, if not, it will be clear what the biases
might be

YAy

Copyright © 2003 M. J. Domint

Next

Next Making Programs Faster 35

Performance Tuning Plan
® A program is taking too long to run
® \We want to speed it up
® First figure out if it is CPU-bound, memory-bound, or I/O bound
O Or possibly some of each
® |f CPU-bound, use arofiler to find CPU-bound parts of the program
O Then think hard about just those parts
® Come up with a plausible improvement
O Test the 'improved’ version to make sure it does the same thing
O Time the 'improved’ version against the original
O If the new version is faster, weigh the benefit against the costs
B For example, is the code more complicated now?
B If so, is it worth it?

® Throughout, try to estimate whether it wouldn't be cheaper in the long run to j
buy more hardware

YRy

Next Copyright © 2003 M. J. Domint

Next Making Programs Faster 34

The Uncertainty Principle
® There's another way to try to eliminate bias
O You can try to correct for it

O By adding a lot of complicated machinery to measure bias and subtract i
the results

® This is theBenchmar k. pmapproach

® But if it goes wrong, you have no idea what really happened

null: -1 wallclock secs
(-0.07 usr + 0.01 sys = -0.06 CPU)
@-16666666. 67/ s (n=1000000)

® Even when it goes right, you have no idea what really happened

"There are two ways of constructing a softwa
design: One way is to make it so simple that t
are obviously no deficiencies and the other wa
to make it so complicated that there are no ob

deficiencies.”

-- C. A. R. Hoare

® These days | always write my benchmarks manually

® Or | haveBenchmar k: : Accur at e write the script for me

Next </>Q 7 Copyright © 2003 M. J. Domint
Next Making Programs Faster 36
Profilers

® A profiler divides the program into small chunks (lines or subroutines)
O It reports the time taken by each chunk
O It tells you which chunks contribute the most run time
® Why is this important?
® Suppose you have a program that needs to run as fast as possible
O You say "Aha! The keyword search function is too slow. | will speed it up
O You get out the benchmarker and get to work
O You research more efficient algorithms

O You try many different keyword search strategies

YRy

Next Copyright © 2003 M. J. Domint

Next Making Programs Faster 37 Next Making Programs Faster 38

Profilers Profilers
@ All this hard work pays off! ® The profiler will tell you which parts of the program contribute most of the run
O Two weeks later the keyword search is twice as fast ® This, in turn, allows you to identify the likely targets for improvement

® But it turns out that the program was spending only 2% of its time doing keyw
search Next ﬁ’;@ YA Copyright © 2003 M. J. Domini

O So now it is spending only 1% of its time doing keyword search
® Two weeks down the drain
® This happens to people all the time

® Don't let it happen to you

Next (,JI;Q 7 Copyright © 2003 M. J. Domint

Next Making Programs Faster 39 Next Making Programs Faster 40

Sample Program: Mail Folder Analyzer Sample Program: Mail Folder Analyzer

® | wanted a sample program written by someone else ® Timing:

® This one was kindly provided by Mr. Robert Spier real On8. 356s
user Oon6. 770s
sys 0onD. 030s

O He used it ifast year's optimization tutorial

. ® Let's see what we can do about that
® |t'sinnfal-n.pl

) ® Perl comes standard with a module catbedel : : DPr of
® The program analyzes ahox-format file
® This module records subroutine entry and exit times as the program runs
perl nfal.pl MBOX
e The output might look like this: ® |t leaves behind this trace data in a file catledn. out
Messages : 109 ® Touseit:
Total Size : 190790
Average Size : 1750 perl -d:DProf nfal.pl MBOX > /dev/null
Most Common Characters: i X X
: 25557 ® Send output todev/ nul | to avoid device-related biases
e : 13719
o : 9330
t @ 7473 p
r : 7460 Next ,’;Q 7 Copyright © 2003 M. J. Domini
Least Common Characters:
~: 18
1 14
\]
&: 6
z: 2
| © 2

Mbst Common Donai ns:
pl over.com: 52
upenn. edu : 38
pobox.com: 19

Next f&Q 7 Copyright © 2003 M. J. Domint

Next

Devel : : DPr of

Making Programs Faster 41

® To analyze thenon. out file, you rundpr of pp

® [t gets a lot of options to control the format of the report it generates

® By default it looks like this:

Total

Excl usi ve Tines

9 me Excl Sec Cunul S #Cal
125

El apsed Tine
User +System Ti ne

30.1 2.149 2. 410

24.6 1.756 3.414 2052
12.2 0.870 0.869 109
6.60 0.470 0.458 2052
5.77 0.411 4.275 109
5.34 0.380 0.367 2161
5.34 0.380 0.358 3604
3.72 0.265 1.377 109
2.39 0.170 0.170 1
1.40 0.100 5.917 116
1.40 0.100 0.269 4
0.70 0.050 0.048 327
0.70 0.050 5.700 109
0.56 0.040 0.091 218
0.42 0.030 0.030 1

= 7.592672 Seconds
= 7.122672 Seconds

Ils sec/cal
104 5

COLOOOEOOELO000
= o
]
IS
IS

0300

Csec/ c

COLOOOEOOLOO000

0005
0017
0080
0002
0392
0002
0001
0126
1700
0510
0674
0001
0523
0004
0300

Mai | :: Header:: _fold_line
il::Header:: _fnt_line

:letter_histogram

: ©:_insert

.. _tag_case
::fold_length
c:fold

1 read_nbox
::BEGN

: . body

i : - header
cilnternet::as_string

war ni ngs: : BEG N

® This lists the 15 subroutines that consumed the most total CPU time

® The top 5 account for 80% of the program’s run time

Next

Next

Devel : : DPr of

ofi me Excl Sec Cunul S #Cal
30.1 9 2.

4104
2052
109
2052
109

I 1's sec/cal |
10. 01

fng 7 Copyright © 2003 M. J. Domini
Making Programs Faster 43
Csec/c
0005 0. 0005 :Header::_fold_line
0.0009 0.0017 ader:: fnt_Tine
0.0080 0.0080 :letter_histogram
0.0002 0.0002 Mail:: Header:: _insert
0.0038 0.0392 Mail:: Header: :extract

® About 30% of the program'’s total run time was spent inside

Mai | :: Header:: _fold_line

O Another 24% was spent ivi | : : Header:: _fnt_line

® 8 of the top 15 functions, totaling 82% of the run time, anin : : Header

® Tentative conclusion: To make this program faster, get nidiaf: : Header

Next

HR7

Copyright © 2003 M. J. Domint

Next

The 90-10 Rule

Making Programs Faster

YY)

® The 90-10 rule says that 10% of the code accounts for 90% of the run time

® The other 90% of the code is:

O Special cases (executed infrequently)

O Initialization code (executed only once per run)

O Error handlers (executed never)

® More conservative version: The 80-20 rule

® | counted the lines to see if this was true

O If anything, '90-10" may be too conservative

O See the Bonus Slides for details

Next B7
Next Making Programs Faster
Mai | : : Header
® Mi | :: Header is loaded bywai | : : I nt er net
® Let's see whereni | : : I nternet is used:
sub handl e_nessage {
ny $nessage = $_[0];
ny $m = Mail::Internet->new $nessage);
$count ++;

$total _size += length $ni->as_string;
letter_histogran($mi->as_string);

from hi stogranm($ni->head->get("From"));

}

® |t would appear that it is being used to:

Copyright © 2003 M. J. Domint

1. Convert the message to an object and then back to a string, and

2. to extract th&r omheader

Next

9.

>

Q7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 45

handl e_nessage
® Let's try doing those things manually instead

sub handl e_nessage {
ny $nmessage = join "", @$_[0]};
ny $fronmpat = qr/~From\s+. *\n
(?:\s+.*\n)*
Ixim

initial line
continuation lines

$count ++;

$total _size += | ength $nessage;

letter_histogran($nmessage);

from hi stogran($nmessage =~ /($fronpat)/);
}

® The results:

Before After

real 0n8. 356s real Oontl. 259s
user on6. 770s user oml. 230s
sys 0OnD. 030s sys onD. 020s

® Well how about that?

O An 81% speedup

Next 7;@ 7 Copyright © 2003 M. J. Domint
Next Making Programs Faster 47
Differences

% sdi ff -w60 out?

® Here’s the output:

Messages : 109
Total Size : 190790 |
Average Size : 1750 |

Messages : 109
Total Size : 190342
Average Size : 1746

Mbst Common Characters: Mbst Common Char acters:
: 25557 | © 24981

e : 13719 e : 13719

o : 9330 o : 9330

t @ 7473 | t : 7515

r : 7460 | r : 7501

Least Common Characters: Least Common Characters:

~: 18 ~: 18

1 14 # 1 14

\]]

&: 6 &: 6

z: 2 zZ: 2

| o2 | o2

Mbst Common Donai ns: Mbst Common Donai ns:

pl over.com: 52
upenn. edu : 38
pobox.com: 19

® Uh oh

pl over.com: 52
upenn. edu : 38
pobox.com: 19

Next

YRy

Copyright © 2003 M. J. Domint

Next Making Programs Faster 46

Differences

® When optimizing a program, it's
vitally important that you not break i

® Unless you live on the planet where P
it's important to get the wrong answ§
as quickly as possible

® So here's what | did:

% per|l nfal.pl MBOX > outl
% per| nfa2.pl MBOX > out2
%diff -u out?

® We hope that the outputs will be
identical

O If not, we have to worry

Next 7>Q 7 Copyright © 2003 M. J. Domini
Next Making Programs Faster 48
Differences
Total Size : 190790 | Total Size : 190342
Average Size : 1750 | Average Size : 1746
® Fortunately, this problem is easy to resolve
® Either the total size was 190342, or it wasn't
% wc -c MBOX
190342 MBOX
® How about that?
O Optimizing the program fixed a bug
® Running the messages througti| : : | nt er net - >new >as_stri ng altered them

O Trailing spaces were trimmed from some header lines
O The continuation characters were changed in other headers

O Capitalization was changed in some header field names

I n- Repl y- To: In-reply-to:
t : 7473 |t 7515
r @ 7460 | r 7501

@ All this will alter the character counts

Next

L7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 49

Mail Folder Analyzer Revisited
® Back to the MFA
® The profiler says thatai n: : | ett er _hi st ogr amis consuming most of the CPU
time

9i me Excl Sec Cunul S #Cal | s sec/call Csec/c Nanme
63.7 0.830 0.829 109 0.0076 0.0076 main::letter_histogram
13.8 0.180 0.180 1 0.1800 0.1800 Mail::Util::read_nbox

® A 20% speedup in this one function would reduce the program’s run time by :

sub | etter_histogram {
ny $strdex = (length $_[0])-1;
$letter_hist{substr($_[0],$_, 1)} ++
}

® Not much to work with here

for (0..$strdex);

O | tried a bunch of things | thought of and some the test audiences sugges
O No luck

O Some of these things are in the Bonus Section at the end

Next f’;Q 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 51

When It’s Timeto Give Up

9di me Excl Sec Cunul S #Cal | s sec/call Csec/c

63.7 0.830 0.829 109 0.0076 0.0076 ::letter_histogram
13.8 0.180 0.180 1 0.1800 0.1800 Util::read_nbox
4.61 0.060 0.130 3 0. 0200 0.0432 BEG N

4.61 0.060 0.887 109 0. 0005 0.0081 i n:: handl e_nessage

® We could conceivably save up to 180 ms per run by sufficiently clever hackin
read_nbox

O How much is that pony really worth?
® Say my computer cost $3000 and has a lifetime of about 5 years
O That's about .0019 cents per CPU-second

O The benefit of a 20% speedupriead_nbox is about .000000676 dollars pel
run

O That's the pony. What is the price?
® My time bills at a fairly high rate, but let's say it's $50 per hour
O | might spend 20 minutes getting the speedup
® To break even, | would have to run the program about 25 million times

® Of course, this is much more likely if the program has 25 million users

Next ﬁ’;@ 7 Copyright © 2003 M. J. Domini

Next Making Programs Faster 50

Mail Folder Analyzer Revisited

® We couldn’t get any improvement franat t er _hi st ogr am

9i me Excl Sec Cunul S #Cal | s sec/call Csec/c Nane

63.7 0.830 0.829 109 0.0076 0.0076 main::|letter_histogram
13.8 0.180 0.180 1 0.1800 0.1800 Mail::Util::read_nbox
4.61 0.060 0.130 3 0.0200 0.0432 nmin::BEG N

4.61 0.060 0.887 109 0.0005 0.0081 nmin::handl e_message

® Maybe look intar ead_nbox now?

® No.

® The profiler is telling us something extremely important
here:

O Trying to speed up the program any more would b{
waste of effort

® The next biggest targetigi | : : Uil ::read_nbox

O But a 20% speedup here would only get us a 2.8 % overall speedup
O That's a total of about 36 milliseconds per run

O Would it really be worth the trouble?

Copyright © 2003 M. J. Domint

Next ?)Q 7

Next Making Programs Faster 52

TheBig Picture

® People waste a huge amount of time on performance improvements
® Here’'s a more common situation
O A programmer is assigned to make progpérfaster
O The programmer spends a week on the project
O The programmer’s salary is US$65,000 per year
O Cost of project: $2,600 (counting overhead, benefits, etc.)
® Compare this cost with the cost of buying another Gb of memory
O Or areally hot CPU upgrade
O Or a second server
® Often, the hardware purchase is a lot more cost-effective

® |tis also more likely to be successful

Next f&Q 7 Copyright © 2003 M. J. Domint

Next

Making Programs Faster 53

TheBig Picture

Next

Next

Through the 1960s, hardware was terribly expensive

Machines were physically large and computationally small

"The late Professor Don Gillies at lllinois claimed
have written the first assembler. . . .

"Gillies was a grad student of John Von Neuman|
working on the IAS machine at Princeton. He wa
supposed to be working as a coder, translating
programs written by more advanced researchers
machine code, but he found the job tedious, and
wrote an assembler to help him do it faster.
"John Von Neumann'’s reaction was extremely
negative. Gillies quotes his boss as having said

do not use a valuable scientific computing instru
to do clerical work!™

(This was reported by Doug Jones of U. lowa; Gillies was his thesis advisor)
O (If true, it would have taken place around 1953)

The discipline of computer programming was forged in this environment

It gave us a hangover

We still think like this

YA Copyright © 2003 M. J. Domint

Making Programs Faster 55

POD Formatting

Next

First, a note about The Big Picture
If per | doc is slow, the best solution might not to be to speed it up
The best solution might be more like this:
for i in /src/perl-5.8.0/pod/*; do
j =" basename $i . pod'
pod2man $i > /usr/|ocal / man/ manlp/ $j . 1p
man -F $j
done
Then you can usean per | f unc or whatever
Perl does this automatically when it is installed
Still, there is some value in speedingpap| doc

Installing the Perl/Tk documentation takes a very long time

YRV Copyright © 2003 M. J. Domini

Next Making Programs Faster

POD Formatting

® | use the documentation all the time

%time perldoc perlfunc > /dev/null

real 0nR4. 396s
user 0nR2. 170s
sys onD. 370s

® But I'd use it more iper| doc weren't so slow

® This section is about ther | doc that comes with Perl 5.8

® Perl documentation comes in the very simple POD format

O pod2man translates POD to the Unix man page format

O nrof f formats man pages for display on a terminal

Next </>Q 7
Next Making Programs Faster
perl doc

® perl doc is mostly just a wrapper aroupdd2nan

Copyright © 2003 M. J. Domint

56

® |t locates files and invoke®d2nman andnr of f as necessary

® Let's find out how to rupod2man:

% strace -s10000 -f -o perldoc.trace perldoc perlfunc > /dev/null

® This generates a list of every system call rupéy doc

O In particular, it will tell us what commangsr | doc ran

% grep execve perldoc. tr
21805 exoove(" st /1 ocal | bi n/perldoc ["peridoc”, “perlfunc'],
21893 execve("/bi n/sh”, ["sh
“Jusr /1 ocal / bi n/ pod2man
21894 exeove(*/ usr /I ocal bi n/ podzmr,
["/usr/local /bi n/ pod2man”
*/usr /1 ocal /1i bl per| 5/5. 8 U/pod/perl'unc pod 1.
21895 execve("/ usr/ bi n/ nroff" -man

® Now let's runpod2man the same way:

-
i ax /usr/local /1iblperl5/5.8.0/ pod/per! func. pod | nroff -man"], ...

% time /usr/local/bin/pod2man --I|ax
/usr/local/lib/perl5/5.8.0/pod/perlfunc.pod > /dev/null
real 0Oml8. 158s
user 0oml7. 670s
sys 0onD. 080s
® Yup

O Probably a lot of the rest is im of f

O Presumably we're not prepared to do anything aboeft

Next 7>Q 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 57

pod2man
® Now we pull out the profiler:

% per| -d: DProf
> perl func. man

./ pod2man-1.pl --lax < perlfunc. pod

® Save the output so that we can check future outputs against it

% dpr of pp tnon. out > dp. out

Total Elapsed Time = 21.27246 Seconds
User +System Ti me = 19. 99246 Seconds

Excl usi ve Tines

o me Excl Sec Cumul S #Cal|s sec/call Csec/c Name
5 03!

4 4.686 14.255 1440 0.0033 0.0099 Pod: : Parser: : parse_text

9.55 1.909 1.887 3609 0.0005 0.0005 Pod: : Mai guesswor k

6.54 1.307 20.109 1.3073 20.109 Pod:: Parser::parse_fromfil ehandl e
5.99 1197 18.354 1609 0.0007 0.0114 Pod: : Parser: : parse_paragraph

5.95 1.189 1.140 7733 0.0002 0.0001 Pod: : ParseTree: : append

5.79 1158 1.349 2121 0.0005 0.0006 Pod: : I nteri or Sequence: : new

4.68 0.936 3.004 3561 0.0003 0.0008 Pod: : Man: : col | apse

3.99 0.797 2.547 2121 0.0004 0.0012 Pod:: Man: : sequence

3.50 0.700 0.692 1208 0.0006 0.0006 Pod: : Man: : t ext mapf ont s

2.80 0.559 0.600 3561 0.0002 0.0002 Pod:: ParseTree:: _unset_chil d2paren

® Clearlyparse_text is the big target here

Next (ngQ Z

Copyright © 2003 M. J. Domint

Next Making Programs Faster 59

Pod: : Par seTree: : append

® Digression: While grovelling over the POD parser code, | wandered in here:

sub append {
ny $self = shift;

local *ptree = $self;
for (@) {
next unless |ength;
if (@tree and !(ref $ptree[-1]) and !(ref $)) {
$ptree[-1] .= $_;
el se {

push @tree, $_;

}
}

® A Pod: : Par seTr ee object is basically an array of strings and obje{@[e[s e[<]
® Normally, we can uspush to append a new item to the array

+ [0 -

+ [0 -

+ [

® But if the last element of the array is a string,

O and the thing we're appending is also a string
O then we can concatenate the two strings instead

[s[o[:]o:] + [z] = [o[e[:[@]s]

Next *e7 Copyright © 2003 M. J. Domint

Next Making Programs Faster 58

par se_t ext

® parse_text is about 76 lines long

@ |ts job is to take apart a POD paragraph like this:
Be aware that the optinizer mght have optimzed call franes
away before C<caller> had a chance to get the information.
That nmeans that C<caller(N)> mght not return information
about the call frame you expect it do, for C<< N> 1 >> In
particular, C<@B::args> might have information fromthe
previous time C<caller> was call ed.

® Locate the escaped sections likeal | er>andC<< N > 1 >>

® Next step: Grovel overar se_t ext until you understand it

Next HR7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 60

Pod: : Par seTree: : append
® | wondered if it was possible to simplify this
® What's the next thing | did?

® | checked taipr of pp output to see iéippend was worth investigating

5.95 1.189 1.140 7733 0.0002 0.0001 Pod:: ParseTree: : append

® |t's tied for fourth place
O It's also small

@ |t should be worth a little effort

Next (ngQ Z

Copyright © 2003 M. J. Domint

Next Making Programs Faster 61

Pod: : Par seTree: : append

sub append {
ny $self = shift;

local *ptree = $self;
for (@) {
next unless |ength;
if (@tree and !(ref $ptree[-1]) and !(ref $)) {
$ptree[-1] .= $_;
el se

push @tree, $_;

}
}

® What if we didn’t bother to agglomerate strings?
® Thenappend would become:
sub append {

ny $self = shift;
push @self, @;

® |t's easy to imagine that this would speedappend substantially

Next PR

Copyright © 2003 M. J. Domint

Next Making Programs Faster 63

Pod: : Par seTree: : append
® To test my change, | created a loead directory
O CopiedPod/ | nput Obj ect s. pminto it
O Modified myPod/ | nput Qbj ect's. pm
O Then ran:
% perl -1. ‘“which pod2man‘ < perlfunc.pod > append-after.out
® Preliminary results:
O Correctness:

% cnp perlfunc. man append-after. out

® Timing:
Before After
real 0onR6. 232s real onR2. 225s
user 0nR4. 520s user 0n20. 870s
sys 0onD. 420s sys onD. 490s

® | also reran theod: : test suite to make sure | didn’t break anything

® End of digression

Next HR7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 62

Pod: : Par seTree: : append
® Will failing to agglomerate strings cause any problems?
® There might be code that is depending on there not being two consecutive sti
® But | don't think there is

® Access tcPod: : Par seTr ee objects is mediated by methods like this:

sub raw text {

ny $self = shift;
ny $text = "";
for (@self) {
$text .= (ref $_) ? $_->raw text : $_;

return $text;

}
® This will work fine if | changeappend

® Let'sgiveitatry

Next fng 7 Copyright © 2003 M. J. Domini
Next Making Programs Faster 64
par se_t ext

® The next thing that occurs to mir se_t ext is complicated because ©f< a->b
>> and such

O There’s a lot of parsing
O And a delimiter stack in case Af< foo B<<< c->d >>> bar >>

O And a lot of special-casery

O But these complicated cases rarely if ever come up
® The common case is very simple

O Typically, something like<cal | er >

Optimize for the common case.

® Doing this is a rather involved exercise in maintenance programming

O |1 ove maintenance programming

Next %Q 7 Copyright © 2003 M. J. Domint

Next Making Programs Faster 65
parse_t ext
® parse_text splits the input into a list dbkens

® Then it deals with the tokens one at a time
® The existing tokenizer splitscal | er > into two tokens:
O C<andcal | er>
O It puts an object representig onto the stack
O Then when it seesal | er > it pops the stack
® This complication is necessary for difficult cases hkeéoo B<bar > baz>
® For simple cases it is overkill
® |dea:
O Tokenize difficult cases as before
O But tokenize simple cases likgcal | er > as single tokens
Next FR4YA Copyright © 2003 M. J. Domint
Next Making Programs Faster 67
parse_t ext
® New tokenization:

(This is a small stress test of the)
(B<pod deliniter>)

(mechanism You\nare allowed to have)
(X<<)

(doubl e >> and even)

(Y=<

(triple >>> delimters.\nOdinary)
(Z<)

(single)

(lI<delimters>)

(may be> nested or may contain)
(A<)

(funny\n< characters>.)

(C<<)

(Doubl e)

(D<del imters>)

(may >>)

(E<<)

(also)

(F<<<)

(nest >>>\nif desired >>.\n)

® So we now need to add handlers for the Kewonpl et e sequence> tokens

Next

In the old regime, the sequence would be put on the stack, then taken off age

O We'll just do that in one fell swoop

HQ7

Copyright © 2003 M. J. Domint

Next

Making Programs Faster 66

par se_t ext

® At this point | built a test case

This is a small stress test of the B<pod deliniter> nechanism You
are allowed to have X<< double >> and even Y<<< triple >>> deliniters.
Ordinary Z<single I<delinmiters> nay be> nested or nmamy contain A<funny
< characters> ~ C<< Doubl e D<delimters> may >> E<< al so F<<< nest >>>
if desired >>.

® Old tokenization:

Next

Next

par

(This is a small
(B<)

(pod delimter> mechani sm
X<<

(doubl e >> and even)
(Y<<<)

(triple >>> delimters.\nOdinary)
(Z<)

(single)

| <

stress test of the)

You\nare al |l owed to have)

(delimters> nmay be> nested or nay contain)
(A<)

(funny \n< characters>.)

(C<<)

(Doubl e)

D<

(delimters> may >>)

(E<<)

(also)

(F<<<

(nest >>>\nif desired >>.\n)

Q7

Copyright © 2003 M. J. Domint

Making Programs Faster 68

se_text

® Old tokenizer code:

Escape code and open bracket

split /([A-Z] <
(?: # Possi bl e extended deliniter

<+ \s) ?
)X

® New tokenizer:

Next

split /([A-Z] <
(% [r<]* >
| (70 <+\s)?

)%

Escape code and open bracket
...and the rest of the escape sequenc
OR a possible extended delimiter

$Q7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 69

parse_t ext
® Old code:

elsif (/IMN[AZ])(<(?:<H\s)?)$/)
Push a new sequence onto the stack of those "in-progress”
(cnd, Sldelim = ($1, $2);
$seq = Pod::InteriorSequence->new

- nanme => $cnd,
-ldelim=> $ldelim -rdelim=>"",
-file => $file, -line => $line

)
$ldelim=~ s/\s+$//, ($rdelim= $ldelinm =~ tr/</>/;
(@eq_stack > 1) and $seq->nested($seq_stack[-1]);
push @eq_stack, $seq;

® This handles th&< part of a sequence
® |t builds a newpod: : I nt eri or Sequence and puts it on the stack

@ Later code takes the remaindesppl et e sequence> bl ah bl ah

O Expandsonpl et e sequence if necessary
O Appends it to theod: : I nt eri or Sequence object
O Putsbl ah bl ah back into the input stream

® There's a lot of state variable management and stack jiggery-pokery

Next fng 7 Copyright © 2003 M. J. Domini
Next Making Programs Faster 71
parse_t ext

® Then | ran the tests

® Theyalmost all passed

basic........... ok 2/11Can’t call nethod "raw text"
on unbl essed reference at ../Pod/InputCbjects.pmline 618,
<GENO> |ine 129.
basic........... dubi ous
Test returned status 255 (wstat 65280, OxffO00)
DI ED. FAILED tests 3-11
Failed 9/11 tests, 18.18% okay

® Not bad considering | don’t know what | am doing
@ | will spare you the details of the next 90 minutes of debugging
® The answer: | missed copying one of the lines from the other blocks!

if (IMIAZ])<(["<>]*)>$) {
$seq = Pod::InteriorSequence->new

-name => $1,
-Idelim=>"<", -rdelim=>">"
-file =>gfile, -line => $line

)
$seq- >append($2) ;
$seq- >nest ed($seq_stack[-1]) if @eq_stack > 1,
$seq_st ack[- 1] - >append($expand_seq
? &Pxseq_sub(S$sel f,
© $seq);

$seq)
}
® Whoops!

Next (ngQ Z

Copyright © 2003 M. J. Domint

Next Making Programs Faster 70

parse_t ext
® My first cut at a special case fotsi npl e> was:
Look for an entire sinple sequence 20030420 nj d@!l over.com

if (IMIAZ])<(["<>]*)>$) {
$seq = Pod::InteriorSequence->new

- name => $1,
-ldelim=>"<", -rdelim=>">",
-file => $file, -line => $line
)
$seq- >append($2) ;
$seq_st ack[- 1] - >append($expand_seq
? &xseq_sub($sel f, $seq)

$seq);

the rest as before ...

® | just cribbed most of this from further down

® | chopped out the parts that seemed unnecessary

® Filled in-rdel i msince it was known immediately

® The->append($2) code is simple because | know thatis a plain string
O (The original version was more like the secapgdend call)

® | don't have to puc<. .. on the stack while | go looking for . >.

Next (ngQ Z

Copyright © 2003 M. J. Domint

Next Making Programs Faster 72

The Moment of Truth

Before After

real 0nR6. 957s real onR7.117s
user 0nR4. 180s user on22. 020s
sys 0onD. 550s sys onD. 480s

® Not bad for one change (about 9%)
® The outputs are identical
O Before:

9di me Excl Sec Cunul S #Cal |s sec/call Csec/c Nane

22.9 4.507 14. 205 1440 0.0031 0.0099 Pod:: Parser::parse_text
® After:
19.4 3.515 12.303 1440 0.0024 0.0085 Pod:: Parser::parse_text

Next ﬁ’;@ 7 Copyright © 2003 M. J. Domini

Next Making Programs Faster 73

Devel : : Snal | Pr of

® Another useful tool for profiling i®evel : : Smal | Pr of

® Instead of measuring the contribution per subroutine, it measures contributior
line

® Of course, it is even less accurate tbavel : : DPr of

It's available on CPAN, but isn’'t standard
® Touse it
% per| -d:SmallProf ./pod2man-1.pl --lax ...

® |t leaves behind a report émral | pr of . out

Copyright © 2003 M. J. Domini

Next 7)@ 7

Next Making Programs Faster 75
smal | prof. out

® To do anything useful with this, we’d have to extract the section of interest

® Then trim out the page headers

® Then sort the lines in ascending order by CPU time

® |t's easier and more useful to replagsel : : Smal | Pr of

® You can write your owievel : : modules

® They get access to the same debugger hooks thatether. : modules do

Copyright © 2003 M. J. Domint

Next <]’>Q 7

Next

smal | prof. out

Making Programs Faster 74

== Smal | Prof version 0.9 ==

Pr ofile of Pud/ Par ser.pm Page 174
count wall tm cpu time line
0 0.000000 0.000000 785: ## capturing parens keeps the deliniters)
1440 0.175561 0.200000 786: $_ = $text;
0 0.000000 0.000000 787: # ny @okens =split /([A-Z] <(’) <H\'s) ’))/
1440 0. 286681 0.460000 788: ny @okens = split /([AZ]
0 0.000000 0.000000 789: (20 [r<>]* > and
0 0.000000 0.000000 790: i (o <+\s)? # Ra
0 0.000000 0.000000 791:
0 0.000000 0.000000 792: # { local $" ")\ n(; warn "tokens:
7160 0.561213 0.970000 793: while (@Ukens) {
5720 0.523698 0.900000 794: $_ = shift @okens;
5720 0.376381 0. 770000 795: next unless |ength;
0 0.000000 0.000000 796: ## Look for an entire sinple sequence
5652 0.924686 1.030000 797: it (IN[AZ])<([~<>]*)>8) |
2083 1.415592 1.390000 798: $seq = Pod:: I nteriorSequence-
0 0.000000 0.000000 799: -name = $1,
0 0.000000 0.000000 800: -ldelim=> "<",
0 0.000000 0.000000 801: -file => $fi | e, -
0 0.000000 0.000000 802:);
2083 1.182618 1.080000 803: $seq->append($2) if |ength($2);
2083 0.179391 0.220000 804: $seq->nest ed($seq_stack[-1]) if
2083 0.576378 0.540000 805: $seq_stack[-1] -
0 0.000000 0.000000 806:
0 0.000000 0.000000 807: ## Look for the beginning of a
0 0.000000 0.000000 808: elsif (/~N[A2Z))(<(? <+\s)?)$/) {
0 0.000000 0.000000 809: ## Push a new sequence onto the
38 0.003812 0.010000 810: ($cmd, $ldelim = ($1, $2);
38 0.029990 0.020000 811: $seq = Pod::InteriorSequence-
0 0.000000 0.000000 812: - name => $cnd,
0 0.000000 0.000000 813: -ldelim=> $ldelim -
0 0.000000 0.000000 814: -file => $file, -
0 0.000000 0.000000 815:)s
Next (7 Copyright © 2003 M. J. Domint
Next Making Programs Faster 76

Debugger Features

® Lots of functions for haruspication

® Seeper| debgut s (orper | debug) for fullest details

e @"::

® YDB: :

_<foo. pl"} contains the source codefafo. pl

sub contains subroutine start-end information

® DB:: DB() is called before each executed line

® cal | er () returns current package, filename, line as usual

® cal l er() also set@®B: : ar gs when called from packags

Next

(7 Copyright © 2003 M. J. Domint

Next

Trivial Debugger

Count ;

Making Programs Faster 7

package Devel ::
sub DB::DB { ++$count }

END { print STDERR "Total statenents: $count\n" }

® Nowper| -d:Count anyprogram pl prints out:

Total statenents: 286

Next 7>Q 7 Copyright © 2003 M. J. Domint

Next Making Programs Faster 79

Devel : : Qur Pr of

Print out the report
t REPORT,

e_ranks = sort {$tine[$b] <=>
e_ranks] = (("*') x 10, (" +)
$#c0unt) {
= ($count[$_], $tinme[$_]);
<Pod/ Parser.pm'}[$];

=> $tinme[$a]} (1 .. $#tine);
") x ("-") x 75, (".7) x

~eee
>3

$L
substr($L, 0, 54);

{
printf "%d%%d 9%.2f %.2f % 54s\n",
$, Sr[$] || * ', $c, $t, 100*$t/S$total
} else
printf "%id

_tinme, S$L;
% 54s\n", $_, $L;

}
}

® The@ thing is a little tricky, but it's just a trick
® $r[$N is a* just whersNis one of the top 10 longest-running lines
O Itis a+ when$Nis ranked 11-25

O lItis a- when$Nis ranked 26-100

Q7

Next Copyright © 2003 M. J. Domint

Next Making Programs Faster 78
Devel : : Qur Pr of
package Devel :: QurProf;
BEG N { ($start_tine) = tinmes
open REPORT, ">", "ourprof.out” or die $! }
sub DB:: DB {
ny ($end_tinme) = tines;
ny $el apsed = $end_tinme - $start_tine;
ny ($package, $filenanme, $line) = caller(0);
ny $sub = (caller(1))[3];
($start_time) = times, return
unl ess $sub eq ' Pod:: Parser:: parse_text’
$count [$1 i ne] ++;
$time[$line] += $el apsed;
$total _tinme += $el apsed;
($start_tinme) = tines;
continued ...
Next </>Q 7 Copyright © 2003 M. J. Domini
Next Making Programs Faster 80
our prof . out
® Here’s an excerpt:
785 ## capturing parens keeps the deliniters)
786+ 1440 0.10 1.87 $_ = Stext;
787 # Ty @okens = split I([AZ]<(7 <+\s)”)/
788+ 1440 0.09 1.69 ny @okens = splu 1([A-2Z] Escap
789 (7 [r]* > .. and |he re
790 | (2 <+\s)? #cﬁapessmle
791)%
792 # { local $" =")\n("; warn "tokens: (@ okens)\
793* 7160 0.64 11.99 while (@okens') {
794* 5720 0.22 4.12 $_ = shift @okens
795* 5720 0.25 4.68 next unless |ength;
796 ## Look for an entire sinple sequence 2003
797+ 5652 0.14 2.62 if(/A([AZ])<([A<>])>$/)
798* 2083 0.19 3.56 cInteriorSequence- >new(
799 -name => $l
800 -ldelim=: < -rdelim=>
801 -file 7>$'|Ie -line
802 H
803+ 2083 0.10 1.87 $seq- >append($2) if |ength($2);
804+ 2083 0.10 1.87 $seq- >nest ed($seq_stack[-1]) if @eq_s
805+ 2083 0.10 1.87 $seq_st ack| - 1] - >append($expand_seq ? &
806
807 k for the beginning of a sequence
808 elsl' (IM([A-Z]) (<(? <+\s)’))$/) {
809 Push a new sequence onto the stack
810- 38 0.01 0.19 ($cm1 $ldelim = (8 2) ;
811 38 0.00 0.00 $seq = Pod: : I nterior sequence >new(
812
813 $\ de\lm -rdeli
814 file => $file, -line
815

® Some of this might be suggestive
® For example, we might try to adjust the tokenizer to avoid generating empty t

O This would obviate line 795

Next YA Copyright © 2003 M. J. Domint

Next Making Programs Faster 81

Turnaround

® Sometimes the key performance criterionesponsiveness

® Time-sharing systems are a lot less efficient than batch systems
O But batch systems are dead
O Because everyone hates them

® | had a client with a CGI application
O Their client (Ford) would hit the CGI application in large bursts
O Maybe 2000 times over five minutes
O Then not at all for a long time
O How to get the application to reply to Ford in a reasonable amount of tim

® The code is about 430 lines, so we'll only see excerpts

Next L7 Copyright © 2003 M. J. Domint
Next Making Programs Faster 83
Turnaround

® The primary problem was the sudden burst of requests all at once
® 3000 instances of the program would run in a few minutes
® These 3000 instances all competed for the CPU and the database

® The programmers tried to improve turnaround time this way:

FORK: {
if ($pid=fork) {
exit parent
CORE: :exit;
}
elsif (defined $pid) {
cl ose(STDIN);

cl ose(STDOUT) ;

cl ose(STDERR) ;

open(STDOUT, " >>/ pr ogr ams/ cassens/ DC/ CQ' eHub/ For dXML. st dout ") ;
open(STDERR, " >>/ pr ogr ams/ cassens/ DC/ CQ' eHub/ For dXML. st derr™);
}

® This allows the server to respond to the client immediately
O The child process goes on to talk to the database
® This made the problem worse, not better

O 6000 processes instead of 3000

Next ﬁ’;@ 7 Copyright © 2003 M. J. Domini

Next Making Programs Faster 82

Turnaround
® The first thing the program does is recover an XML file from the CGI request:

ny $xm post = CA ::XM.Post->new();
my $xm = $xm post->data();

® |t saves the XML (actually a SOAP request) to two files:

open(QUT, ">$outfile");
print OUT $xnl;

cl ose(QUT);

open(QUT, ">>%dai | yfile");

print OUT $outfile,":", $xm ,6 "\ n";
cl ose(QUT);

® Then it reads the XML back in:
ny $xsl = XM.:: Sinple->new();

ny $doc;
eval { $doc=$xs1->XM.in(S$outfile,

forcearray => [’ Change']); };
@ [f all goes well to this point, it returns a success code back to Ford
® After printing the success or failure code, the program opens a database coni

® |t extracts information from the SOAP request and adds it to the database

Next ﬁ’;@ 7 Copyright © 2003 M. J. Domini
Next Making Programs Faster 84
Turnaround

® The biggest improvement:
O The client converted the CGlI script into an Apache plugin module
O No more 3000 processes
® However, | had some recommendations also
® The major one:
O Commit the XML to a file, check it, return the status code, and exit
® A separate background process can take care of parsing it and updating the
® The separate process handles one file at a time
® This makes it possible to control the load
O Only one background process is running at a time

O It can go to sleep when system load is high, continue when things cool o

Next f&Q 7 Copyright © 2003 M. J. Domint

Next Making Programs Faster 85 Next Making Programs Faster 86

Turnaround Turnaround

® Also some minor recommendations ® Another minor recommendation: Get rid@g : : XM_Post

use CA :: XM.Post ;
ny $xm post = CA :: XM.Post->new();
ny $xm = $xm post->data();

® Instead of this:

eval { $doc=$xsl1l->XM.in($outfile, forcearray => [' Change']); };

i o i i i ing is:
@ Just use this: If you look at thecd : : XMLPost code, you discover that what it's doing is

| = $ENV{ CONTENT_LENGTH} ;
eval { $doc=$xsl1->XM.in($xm , forcearray => [’ Change']); }; my $c SEN - H

. . . . if (read(STDIN, $self->{_data}, $cl) == $cl)
® The XML is already in memory (we just wrote it out)
return $self;

O So why bother to read it back in again?
® The world is full of useless modules like this

Next YRV Copyright © 2003 M. J. Domin ® They exist only to put a hokey OO interface on something that didn’t need on
® | suggested replacing it with:

ny $xmi;
ny $cl = $SENV{ CONTENT_LENGTH} ;
unless (read(STDIN, $xml, $cl) == $cl)
{
print "Status: 404 Not Found\n";

pr| nt XMLLOG "bad post\n";
exit;

Next 7>Q 7 Copyright © 2003 M. J. Domint

Next Making Programs Faster 87 Next Making Programs Faster 88

Blunders Pseudo-Hashes

® Hashes are commonly used for objects
O Keys are member data names, values are member data

if ($self->{TYPE} eq 'octopus’) {
$sel f->{tentacl es} = 8;
$sel f->{hearts} = 3;
$sel f->{favorite_food} = 'crab cakes’;

® But arrays are smaller and faster

® Big disadvantage: Data is referred to by number instead of by name

if ($self->[2] eq 'octopus’) {
$sel f->[17] = 8;
$sel f->[4] = 3;
$sel f->[28] = 'crab cakes’;

Next 7;@ 7 Copyright © 2003 M. J. Domint

Next </>Q 7 Copyright © 2003 M. J. Domini

Next Making Programs Faster 89

Pseudo-Hashes

® For 5.005, someone had an interesting idea:
® Suppose an object was declared from a certain class, like this:
ny Critter $self;
® Supposexitter objects are based on arrays instead of hashes
® And supposeri tter. pmdeclared its fields at compile time, like this:

package Critter;
use fields gm NAME TYPE size hearts |ikes_cookies

pel agic tentacles is_tasty

)

® Then when Perl sagsel f - >{ TYPE} it could pretend you wrote$sel f - >[2]

® You would get all the benefits of both!
Next f&Q 7 Copyright © 2003 M. J. Domint
Next Making Programs Faster 91

Pseudo-Hashes

® |t was all very complicated
O Lots and lots of code had to be added to Perl
O All sorts of complications
O exi sts had to be extended to work on arrays

® After it was all done, however, the new improved semantics were 15% faster
the old:

ad New

package Critter;
use fields gw(... hearts ...);

ny Critter $self;
$sel f->{hearts}; $sel f->{hearts};

® So perhaps it was worth all that trouble

Next ﬁ’;@ 7 Copyright © 2003 M. J. Domini

Next

Making Programs Faster 90

Pseudo-Hashes

Next

Next

This idea was developed over the next few years
Big problem: This cannot be translated at compile time
$sel f - >{ $key}

Solution:$sel f would be an arrayref that pretended to be a hashref

It would carry around a hash that mapped keys to values:
[{ NAME => 1, TYPE => 2, size => 3, ... },
"Fenchurch",
“Cctopus”, "Small", 3, undef, ...]

You were now allowed to use an arrayref as if it were a hashref
This was formerly an error:
$array_ref->{$key}
Now it is an abbreviation for this:
$array_ref->[$array_ref->[0]->{$key}]

Note that this is somewhat slower thiarash_r ef - >{ $key} would have been

YRV Copyright © 2003 M. J. Domini

Making Programs Faster 92

The Missing 15%

Next

A couple of years later, some bright boy finally asked the right question

He did not compare the new syntax with the old syntax in Perl 5.005

Instead, he compared the old syntax in 5.005 with the old syntax in 5.004
5.005 was 15% slower

Adding the pseudohash stuff to 5.005 had slowed dsinmash access by 15%
In the best possible case, the efficiency gain was just enough to get you back
Pseudo-hashes are now being withdrawn

Good riddance

PR Copyright © 2003 M. J. Domint

Next Making Programs Faster 93

Getting the Wrong Answer as Quickly as
Possible

Message- | D: <3A317EF2. 3000509@!| amat h. dyndns. or g>
Subj ect: eval () performance
Date: Sat, 09 Dec 2000 00:38:11 GMI

1"ve been taking a | ook at sone old Perl code, witten by
soneone else. The main part of the app does the follow ng
(it's a CAd script):

1 Read in a certain C@ paraneter

2 Based on this paranmeter, open() a certain Perl script as a
text file and read the contents into a single scalar variable
3 Use the followi ng code to evaluate the | oaded code:

eval $code;

if (3@ {
#handl e errors

M/ question is: how would you inprove this? My first
thought was to use an eval block - i.e.

eval {$code;};
if (%@
#handl e errors

}

Woul d this inprove perfornance?
® Good question

® Unfortunately, things started to go awfully wrong at that point

Next (ﬂgQ 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 95

Getting the Wrong Answer as Quickly as
Possible

® First, the benchmark code is way too complicated

® ['ll use this instead:

#1/usr/bin/perl -w
use Benchmark;

ny $code = g{"x" . "y"};
timet hese(8000, {
'Slow Eval® => sub {eval $code 1},
'Fast Eval' => sub {eval {$code} }
IR
Benchnark: timing 8000 iterations of Fast Eval, Slow Eval...
Fast Eval: 0 wallclock secs
(0.02 usr + 0.00 sys = 0.02 CPU)
@ 400000. 00/ s (n=8000)
Slow Eval: 4 wallclock secs
3.43 usr + 0.00 sys = 3.43 CPY)

(
@ 2332. 36/ s (n=8000)

® Looks conclusive, doesn't it?

® Anyone see the problem here?

Next PR

Copyright © 2003 M. J. Domint

Next Making Programs Faster 94

Getting the Wrong Answer as Quickly as
Possible

>> Wul d this inprove performance?
>
> Wite a benchmark and see.

well alright :-)

#1/usr/bin/perl -w

#test.pl

use strict;

use Benchmark;

undef $/;

ny $code;

timet hese(8000, {
' Sl ow Eval’

=> sub {open(INPUT, ’code.pl’);$code =

<I NPUT>; cl ose(| NPUT) ; eval $code;},
'Fast Eval’ => sub {open(INPUT, 'code.pl’);$code =
<I NPUT>; cl ose(| NPUT) ; eval {$code;};}
b
Resul ts:
Benchnark: tinming 8000 iterations of Fast Eval, Slow Eval...
Fast Eval: 0 wallclock secs
0.30 usr + 0.13 sys = 0.43 CPU)
Slow Eval: 6 wallclock secs
(4.98 usr + 0.42 sys = 5.40 CPY)

So apparently an eval block is significantly faster than
calling eval () on a scalar.

® Well, that's good to know

® Anyone see the problem here?

Next YA Copyright © 2003 M. J. Domint
Next Making Programs Faster 96

Getting the Wrong Answer as Quickly as
Possible

#!/usr/bin/perl -w

use Test::Mre 'no_plan’;
ny Scode = q{"x" . "y'};
is(eval $code , 'xy', "string eval");
i s(eval {$code}, 'xy’, "block eval");

® |et's make sure thossval s are doing what we thought:

ok 1 - string eval

not ok 2 - block eval

Failed test (evaltest.pl at line 6)
got: Uxt .oty

expected: ' xy’

1..2

Looks |ike you failed 1 tests of 2.
® How about that
O The "blockeval " is not actually eval-ing the code
® eval {$code} is not analogous teval $code

O Itis analogous teval ' $code’

Next f’;Q 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 97 Next Making Programs Faster 98

The Wrong Question Trivial Benchmarks

"So apparently an eval block is @ That's another reason | don't lileenchnar k. pm
significantly faster than
calling eval () on a scalar. ® |t makes it too easy to ask the wrong questions

. » .
Yep, benchmarks show that it's 170 times faster ® "Which is faster? Subroutine or method calls?"

® But that's because it doesn't actually evaluate anything @ "Which is fastertap orf or 2"

® Whoops
p ® People like to usBenchmar k to answer questions like this
@ |f you have code in a string, and you want to execute t

: i o
code, youmust use ‘stringeval ’ ® But often the best answer is "Who the hell cares?

® Asking whether string or blookval is faster is The Wron(® Suppose it turns out thatp is faster

uestion
Q ® Only a pinhead would rewrite all his programs to mgeinstead of or
O It's like asking whether a screwdriver is faster than

. . . .
blinking your eyes The difference is going to be minuscule anyway

o Ifitisn' . .)
0 You can blink your eyes a lot faster than you can If it isn’t, the right response is to file a bug report to p5p

screwdriver

q ! '
O But it won't help you get that screw in Next ILQ VA Copyright © 2003 M. J. Domint

Next (&7 Copyright © 2003 M. J. Domini

Next Making Programs Faster 99 Next Making Programs Faster 100

Trivial Benchmarks 1+1=0

Newsgroups: conp. I ang. perl. nisc ® Consider this:
Date: Wed, 10 Cct 2001 18:59:17 +0400
Message- | D: <3BC46245. E2B3630A@i sem net > while (<>) {
—n . . n, Stext) =split /: /, $_, 2;
Suppose we have $_="haha:lal a:rere"; m(z N —
What is faster?? } $line[$n] = Stext;
($haha) = split /:/, $_; # or
haha) = split(/:/, , 1),
($haha) = split($. 1 ® Each timesn is larger thar@i ne, the array is extended
® Lots of people weighed in on this matter . . .
O It might have to be copied to a new, larger region of memory
® Some advised the use®nchnar k
® Why not extend all at once?
® Few noticed that the two samples do not do the same thing
® If you know thatn will get as large as 1000000, then:
O Or that the second sample is entirely worthless
$#l i ne = 1000000;

#$ ="abocd while (<>) { .

splTt /i1, $. 3 #("a", "b", "cid") ny (n, Stext) =split /: /, $_, 2
split /:/, $_, 2; # ("a", "b:rc:d") $line[$n] = $text;

split /:/, $_, 1; # ("arb:c:d") }

($haha) = split /:/, $_; # ("a", "b:c:d") ® This should save time

< . .
Next LQ YA Copyright © 2003 M. J. Domint Next 7)@ pA Copyright © 2003 M. J. Domint

Next

1+1=0

® One day in 1998 Jon Orwant posteghéo! 5- porters

Making Programs Faster 101

® He had benchmarked tBél i ne = 1000000 optimization
® |t was not speeding anything up
| tried to quantify the speedup of preallocating arrays, and found that it actually ¢
your code down. Always. Several benchmarks on several platforms with several \
of Perl 5 all chanted in unison: Avoid settitwar r ay.
® (http://ww. xray. npe. npg. de/ mai | i ng-1i sts/ perl 5-porters/1998- 04/ ms¢

® There was a big hue and cry over this

O "$#line = 1000000 must be broken!"

Next L7

Copyright © 2003 M. J. Domint

Next

1+1=0

sub preallocate {

Making Programs Faster 103

my (@);
$#c = 99999;
for (nmy $i; $i < 100000; $i++) {
$c[$i] = rand;
}

® The answer was eventually provided by Chip Salzenberg

® Perl has a clever optimization in it

Perl figures tha@ got big once, so it is likely to get big again
® Whenpreal | ocat e returns,@ is not deallocated
O The next call re-uses the same space as the last call
® And that leaves#c = 99999 with nothing to do
O In fact, it's a small waste of time because it's superfluous
® So you pay the cost for your 'optimization’
O But the gross benefit is zero because you alrbadyhe benefit

® One optimization plus one optimization looks like zero optimizations

Next ?)Q 7

Copyright © 2003 M. J. Domint

Next

1+1=0

® Here's Jon's benchmark:

Making Programs Faster 102

use Benchnark;
sub one_by_one {

ny ;
for (nmy $i; $i < 100000; $i++) {

$c[$i] = rand;
}
sub preallocate {
vy (@);
$#c = 99999;
for (nmy $i; $i < 100000; $i++) {
$c[$i] = rand;
}

timethese (100, { 'preal l ocate’
' one_by_one’

P

timng 100 iterations of one_by_one,
111 secs (50.85 usr
148 secs (67.13 usr

=> 'preallocate()’,
=> 'one_by_one()’

Benchnar k:
one_by_one:
preal | ocate:

preal |l ocate. ..
0.52 sys = 51.37 cpu)
0.57 sys = 67.70 cpu)

Next ?)Q 7

Copyright © 2003 M. J. Domint

Next

1+1=0

® This bites me all the time

Making Programs Faster 104

® For example, I'll add a file cache to a program and discover it doesn’t work
O Because the OS already has a file cache behind the scenes

® | considered going to a lot of trouble to get: : Fi | e to always write whole disk
blocks

O But there’s no point, because the stdio library already does that

Next ﬁ’;@ 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 105 Next Making Programs Faster 106

File Editing Devel : : Smal | Prof
. . . Lo % we nyin. dat
Subject: How to edit a file nmost efficiently? 1568 5707 44808 nyin. dat
Dat e: 1998/ 04/ 27 % per| -d:SmallProf copyl.pl
Message- | D: <3544E019. ALF7A6D6@hel | . conp % we nyin. dat

1466 5215 40357 nyin. dat

If I want to edit a file (say, renpve all comment lines), | = Smal | Prof version 0.9

can do this: Profile of ./copyl.pl Page 1
open IN, "nyin.dat" or die: I count wall tm cpu tine line
Open ouT fTL; out.dat" or di g. 1 0 0.000000 0.000000 1:#1/ usr/ bi n/ per|
P : myout. e 0 0.000000 0.000000 2
while (<IN>) 1 0.000186 0. 000000 3iopen IN "nyin.dat" or "die: $I";
{ print QUT $_ unless (/"#l); 1 0.000196 0. 000000 4:open OUT, ">nyout.dat" or "die: $!";
} 1570 0.013959 0.270000 S5:while (<IN>)
cl ose OUT: 1569 0.015762 0. 270000 6: { print QUT $_ unless (/~#/);
close I N 0 0.000000 0.000000 7}
P 1 0.000239 0.000000 8: cl ose QUT;
rename "nyout.dat”, "nyin.dat"; 1 0000054 0. 000000 9:close IN:
. . 1 0.000304 0.000000 10:renane “nmyout.dat", "nyin.dat";
But this opens two files and does a rename. | suspect
this won't be very efficient. Is there a better way? ® Lines 5 and 6, which copy the file, consume 96.8% of the total run time

Thanks for any advi ce.

® We'll useDevel - Smal | Prof here O And so close to 100% of the CPU time that the difference is not detectab

But this opens two files and does a rename. | suspect this wor

Next 7>Q 7 Copyright © 2003 M. J. Domini very efficient.
Is there a better way? Thanks for any advice.

® My advice:You are worrying about the wong thing

Next 7;@ A Copyright © 2003 M. J. Domint
Next Making Programs Faster 107 Next Making Programs Faster 108
Good Advice Premature Optimization

® | spent a lot of time and effort writing a really good cache algorithmifer: Fi | e
® |t is very sophisticated

® |t uses a heap data structure to implement a least-recently-used queue

® Old records are expired from the cache when it becomes full

® A very nice piece of programming

® Unfortunately, it makesi e: : Fi | e slower, not faster
@ Donald E. Knuth, a famous wizard, is fond of saying: ® At least | got my pony

Premature optimization is the root of all evil. p
Next /;Q 7 Copyright © 2003 M. J. Domini

® (He's actually quoting Tony Hoare here)

Next FR4YA Copyright © 2003 M. J. Domint

Next Making Programs Faster 109

Premature Optimization
® My reasoning was that e: : Fi | e usage will be heavily I/0 bound
® So anything | could do to reduce real I/O would speed up the module

® Having made that decision, | invested a lot of effort in a sophisticated caching
algorithm

® But | was wrong
® The typical cache hit rate for programs using: : Fi | e is close to 0
® The expense of maintaining the cache is wasted

® See Bonus Slides for a quantitative analysis of caching

Next f&Q 7 Copyright © 2003 M. J. Domint

Next Making Programs Faster 111

Vanity, Vanity, all isVanity
® There was a followup:

| decided to apply Benchmark to these various approaches. |
compiled a list of 9952 filenames, then sorted them 10**7 time

® Here's the code he showed:
timethese(10**7, {
' CODE A

=> '@orted
=>'@orted

sort { -M$b <=> -M$a } @ilen
mp { $_->[0] }
sort {$b->[1] <=> $a->[1]}
map {[$_, -M$_]} @ilenanes;’,
"CODE C => '$date{$_} = -M$_for @ilenanes;
@orted = sort {$date{$b} <=> $date{$a} }
undef %date;’,
"CODE D => ' @orted = map $_->[0],
sort {$b->[1] <=> $a->[1]}
map [$_, -M$_], @ilenanes;’,

' CODE B’

)

® The warning sign is already visible, although | didn’t pick up on it yet

Next Q7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 110

Vanity, Vanity, all isVanity
® Some months ago, | asked the Philadelphia Perl Mongers
Why do people bother to use the Schwartzian Transform?

Schwartzian Transform

@orted = map { $_->[0]
sort { $b->[1] <=> $a->[1] }
mp { [$_, -M$_] } @iles;

® My idea was that this alternative is much easier to understand:

Alternative

{ ny %late;
$date{$_} = -M$_for @iles;
@orted = sort { $date{$h} <=> $date{$a} } @iles;
undef 9%dat e;

}

® | did some benchmarks and found that it was only fractionally slower

NULL: 0. 00u 0. 00s 0. 00t ot al

ST: 8.73u 1.48s 10.21total

Hash: 9.59u 1.63s 11.22total
Next %Q 7 Copyright © 2003 M. J. Domini
Next Making Programs Faster 112

Vanity, Vanity, all isVanity

Resul ts:
Benchnmark: tinm ng 10000000 iterations of CODE A, CODE B, CODE
D...

CODE A: 39 wal | cl ock secs

(38.50 usr + 0.00 sys = 38.50 CPU) @ 259740.26/s (n=1

B: 42 wallclock secs

(42.57 usr + 0.00 sys = 42.57 CPU) @ 234907.21/s (n=1
CODE C: 93 wal | cl ock secs

(91.94 usr + 0.00 sys = 91.94 CPU) @108766.59/s (n=1
CODE D: 43 wal | cl ock secs

(42.13 usr + 0.00 sys = 42.13 CPU) @ 237360.55/s (n=1

® Does anyone see anything strange here?
® (The 0.00 system time is not an anomaly)

O (This benchmark was run on a Windows system)

Next

$Q7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 113

Vanity, Vanity, all isVanity

| decided to apply Benchmark to these various approaches. |
compiled a list of 9952 filenames, then sorted them 10**7 time
® Here's the real tipoff that something is wrong

CODE A: 39 wal | clock secs
(38.50 usr + 0.00 sys = 38.50 CPU) @ 259740.26/s (n=1

® This says that his computer is sorting 9952 filenames 10000000 times in 39 s

® That means it's sorting 9952 filenames in 3.9 microseconds

® Not likely.
Next f&Q 7 Copyright © 2003 M. J. Domini
Next Making Programs Faster 115

Vanity, Vanity, all isVanity
® Anyone can make a technical error like this one
® But the real problem is more serious
® Whatreally went wrong here?
1. People usingenchnar k. pmhave a tendency to disengage their brains

B The author of the benchmark took the obviously nonsensical results
value

B He wrote up a detailed analysis of these nonsensical results
2. Benchmar k. pmis complex

B Here there was a scope problem that was obscured by the use of
Benchnar k. pm

B The code wasn't doing what it appeared to be doing
3. Benchmar k. pnis internals are obscure
B This tends to inhibit understanding of the absolute numbers that it er

B You tend to compare the relative quantities only

Next f&Q 7 Copyright © 2003 M. J. Domint

Next Making Programs Faster 114

Vanity, Vanity, all isVanity
® What went wrong here?
® The actual code was something like this:

nmy @ilenames = glob("/tnp/*");

timethese(10**7, {
'CODE A =>'@orted = sort { -M$b <=> -M$a } @ilen

)i
When you give strings Benchmar k, it executes them witéval
It does theeval internally, inside oBenchmar k. pm

This is outside the scopeaf @il enanes

The benchmark is usin@enchmark: : fi | enanes, which is empty

You can indeed sort an empty list in 3.7 microseconds

® But the results were entirely meaningless

Next f’;Q 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 116

Vanity, Vanity, all isVanity
® Postscript: In 2005 | gave this class at OSCON

® An audience member interrupted to say he had found an obvious way to spet
| etter_histogram

O He had benchmarked it and found it substantially faster
® His benchmark looked something like this:

use Benchmark;
ny $t = "sone reasonably long string here";
timethese(-5, { orig =>'orig_letter_histogran($t)’' ,
nine => 'ny_letter_histogranm($t)’ ,
i

sub orig_l etter_histogram {
ny $strdex = (length $_[0])-1;
$letter_hist{substr($_[0],$_, 1)} ++ for (0..$strdex);
}
sub ny_l etter_hi stogram {
$letter_hist{$1}++ while $_[0]
}

® The following week, | did it right

=~ (.)//gs;

® His suggestion is 250% slower:

orig histo 11.42 0.03 11.45
while //gs 37.28 0.03 37.31
NULL 0.04 0.00 0.04

Next ?)Q 7

Copyright © 2003 M. J. Domint

Next

Making Programs Faster 117

Numerical Calculation

Next

Next

http://wmv. per| monks. or g/ i ndex. pl ?node_i d=134419

Good day, fellow monks. I've got a snippet of code that I'm hoping you can
help me speed up. My code is to find the N-th root of a given number.

use Math:: Bi gFl oat ;

sub Root {
ny $num = shift;
ny $root = shift;
ny $iterations = shift || 5;
if ($num< 0) { return undef }
if ($root == 0) { return 1}
ny $Num = Mat h: : Bi gFl oat - >new($num);
ny $Root = Math::BigFl oat - >new($root);
ny $current = Math:: Bi gFl oat->new();
ny $guess = Mat h: : Bi gFl oat - >new($num/ $root);
ny $t = Mat h: : Bi gFl oat - >new($guess ** ($root - 1));
for (1 .. Siterations) {

$current = $guess - ($guess * $t
if ($guess eq $current) { last }
$t = $current**(S$root-1);

$guess = Scurrent;

- $Num) / ($Root * $t);
}
return $current;

This uses Newton’s method for finding the roots. It produces very accurate
results, provided you increase the number of iterations if you're dealing with
large numbers and/or large roots. Therein lies the problem.

L7

Copyright © 2003 M. J. Domint

Making Programs Faster 119

Numerical Calculation

Next

If you want something relatively simple like the 5th root of 100:

$x = Root(100, 5);

the result is reasonably fast. However, with each iteration, it get progressively
slower. So if you wanted something enormous, like:

$x = Root(500000, 555);

you could be waiting for ages. If we leave the number of iterations low, the
result will likely be very inaccurate, but as we increase the number of
iterations, each individual iteration gets slower and slower. The only thing I've
been able to come up with so far is the comparis@gwdss andscur r ent

inside the for loop. | was able to get a bit of a speed boost by doing a string
comparison rather than a numeric comparison. Any suggestions on how to
speed this up?

HR7

Copyright © 2003 M. J. Domint

Making Programs Faster 118

Numerical Calculation

® What's Newton's Method?

(o.80~3) 2

LTr 214 340

® Here we want to find sqrt(3)

O This is a numbex such thax?- 3 = 0

O That's thex-coordinate of the point where the parabola crosses &es

® Make a guesg;

O Extend the tangent to the parabolgatintil it intersects the axis
O This isg,, which is a better guess thgpwas

O Repeat as desired

1>Q 7

Copyright © 2003 M. J. Domint

Making Programs Faster 120

Numerical Calculation

® There were a whole load of pointless suggestions:

BTWIt seens that using Math::BigFloat nethods directly is
slighly faster then relying on overloaded operations:

ti met hese(1000, {
Methods => sub { Math: : Bi gFl oat - >new(100) - >f nul (Mat h: : Bi gFl oat - >new(100)) },
" Qperations => sub { Math::BigFl oat->new(100) * Math: : Bi gFl oat - >new(100) },
Benchmark: timing 1000 iterations of Methods, Operations...
Met hods: 2 wal |l cl ock secs
1.48 usr + 0.01 sys =
@671. 14/ s (n=1000)
Operations: 1 wallclock secs
1.63 usr + 0.00 sys = 1.63 CPY
@613. 50/ s (n=1000)

1.49 CPU)

® This guy just couldn’t leave well enough alone:

Mor eover using subroutine calls should be even nore
faster. That is use Math::BigFloat::OP($num instead of
$num >0P.

HR7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 121

Numerical Calculation

Let me throw around ny math skills... Recalling some binary
math | figured that 1072 (10 to the power of 2) may be
sinmplified into this: 1072 = 10x10 = 10x(2x2x2+2).

Notice all the 2's there? Here's where the left shift
operator '<<' cones in handy (and it's pretty fast by the
way) .

So, every nultiplication by 2 could be replaced by a |eft
shift by one (in binary it’'s equivalent to multiplying by 2
;) like this:

1072 = 10<<3 + 10<<1;
as 10<<4! :)

(by the way, this is may not be witten

So, |'ve replaced 10x10 by a few left shift operators. The
key here is to determ ne how many left shifts will have to be
performed for given power.

® Etc.
® Now, if we were programming in assembly language, maybe

O (Maybe not)

Next f’;Q 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 123

Numerical Calculation
® First, what about this?

as we increase the number of iterations, each individual iteration gets
slower and slower.

® Suppose you have two numbers of 8 decimal places each
O Say 0.12345678 and 0.23456789
® What happens when you multiply them?
O You get 0.0289589963907942, which has 16 digits
o |f you multiply two 16-digit numbers, you get a 32-digit result
® Mat h: : Bi gFl oat never throws away any trailing digits

O The numbers get longer and longer every time you do a multiplication

Next ?)Q 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 122

Numerical Calculation
® You should really check out this thread
O It's a gold mine of bad advice
® One guy even threw up his hands:

W thout delving into the internals of Math::BigFloat, | don't

see any way to speed this up. Perhaps you could try a
different approach? A different al gorythm maybe?

® And that was probably the least worthless suggestion

® Except for (ahem) mine

Next (ﬂgQ 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 124

Numerical Calculation
® Newton's method takes a guess and finds a better guess
O The number of correct bits in the guess tends to double on each iteration
O If the initial guess is good, the new guess is superb
O If there were no correct bits to begin with, it wanders around aimlessly

® The initial guess in the original code wasrible:
ny $guess = Math::BigFl oat->new($num/ $root);
® ForRoot (500000, 555) this guesses that the root is 900.9009009
O The root is actually 1.02392563097332211627
® At x=900.9, the curvg = x>°°- 500000 isxtremely steep
O The tangent line is almost vertical (it has a slope of about 3.4e1639)
O So the 'improved’ guess is almost the same as the original guess

O But twice as long!

Next ﬁ’;@ 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 125

Numerical Calculation
® Instead of making a lousy initial guess, like this:
ny $guess = Math::BigFl oat->new($num/ $root);
® Make a good initial guess, like this:
ny $guess = Math::BigFl oat->new($num ** (1/$root));
® This uses the hardware floating-point arithmetic to calculate the right answer.
O ...to 53 bits of accuracy...
O ...instantaneously
® Then use Newton's method to get even closer
® After 4 iterations, you have 130 decimal places correct
® Moral of the story: Stop fussing around with micro-optimizations

® Second moral: The world is full of crappy optimization advice

Next PR

Copyright © 2003 M. J. Domint

Next Making Programs Faster 127

each VS. keys
® This gets the keys all at once, in C:
for (keys %ash) {
,
® This gets the keys one at a time, dispatching Perl operations in between:
while (nmy $k = each %ash) {
}

® The purpose ofach is to conservepace, not time

® You use it when the hash is very large and you don't want to store all the key
once

O For example if the hash is tied to a large disk file

® Since it is a space-conserving optimization, you would expect it to be slower 1
keys

® Andsoitis
O Unless you're also interested in the values

O Or unless th&eys call causes your program to become memory-bound

Next

$Q7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 126

Crappy Advice

® The following appeared on the StLouis.pm web page last year:

Per| Tip: Use each when iterating through a hash
table. It's far better than keys for iterating over |arge
hash tabl es.

® Better for what? Curing sciatica?

® Supposing the author meant 'faster’, he was wrong

Next ﬁ’;@ 7 Copyright © 2003 M. J. Domini

Next Making Programs Faster 128

What to Remember
(Antepenultimate slide)

1. Look at the big picture first - think about the project, not the program
2. It's hard to guess what part of the program matters, so use tools
3. 90% of the runtime is accounted for by 10% of the code
4. The speed of the other 90% of the code hardly matters at all...
O ...so don't waste your time on it

5. TheBenchmar k module is good for answering questions that aren’t worth askit

Next ﬁ’;@ 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 129 Next Making Programs Faster
Jackson’s Rules Jackson’s Rules

@ All this was summed up by famous computer scientist Michael A. Jackson 1. Don'tdo it.

® In his "Two rules of when to optimize"

q
Next 7
O (Principles of Program Design, 1975) /)Q

Next %Q 7 Copyright © 2003 M. J. Domint
Next Making Programs Faster 131 Next Making Programs Faster
Jackson’s Rules Thank You
2. (For experts only) ® Questions? Send me mail.
Don't do it yet. nj d-t pc- per f +@I| over. com
Next %Q 7 Copyright © 2003 M. J. Domint

130

Copyright © 2003 M. J. Domint

132

Next ?)Q 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 133

Bonus Slides
® \Writing a class is like making a film
® Some good stuff ends up on the floor of the editing room

® |[f this class were a DVD, this stuff would be the "special features and deleted

scenes"”
Next 1@ 7 Copyright © 2003 M. J. Domint
Next Making Programs Faster 135
System L oad

® System administrators are interestedystem load

® This is what is reported by thet i me command:

7:19pm up 65 days, 7:23, 24 users, |oad average: 0.22, 0.44, 0.81

® And by tools likexI oad

= xload

plover.con

I

® |tis the average number of jobs that are ready to be run
O (This omits jobs that are sleeping, waiting for 1/O, etc.)

@ [f it exceeds the number of CPUs, then the system is overloaded

Next

Q7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 134

Pod: : Par seTree: : append
® Results:

O Before: 4th place

i me Excl Sec Cunul S #Calls sec/call Csec/c Name

5.90 1.179 1.134 7733 0.0002 0.0001 Pod:: ParseTree:: append
® After: 10th place
2.22 0.370 0.327 7733 0. 0000 0.0000 Pod:: ParseTree: : append

® Note that it's 2.22% of the neghorter run time
® The newappend would have been in 16th place in the 'before’ version

® End of digression

Next (ngQ Z

Copyright © 2003 M. J. Domint

Next Making Programs Faster 136

Memory Bound Programs

® Here are the values | plotted in the graphs:

I nput Size wal I clock tine
1000 0.10
2000 0.14
4000 0.30
8000 0. 62

16000 1.43
32000 3.05
64000 6. 19
128000 12.50
256000 28.19
512000 71.69
1024000 134. 87
2048000 14601. 00

Next ﬁ’;@ 7 Copyright © 2003 M. J. Domini

Next

Making Programs Faster

Memory Bound Programs

® Here's the raw data for the last three lines

O | made three runs with each size and took the

512 000

24.91user 0.85system 1:11. 69el apsed 35%CPU
(256maj or +7597m nor) pagef aul ts Oswaps

25. 09user 0.56system 0: 54. 91el apsed 46%CPU
(256maj or +7597m nor) pagef aul ts Oswaps

27.62user 0.64system 1:13. 82el apsed 38%CPU
(256maj or +7597m nor) pagef aul ts Oswaps

1024 000

60. 38user 1.90system 2: 06. 18el apsed 49%CPU
(299maj or +19082ni nor) pagef aul t s Oswaps
71. 49user 1.80system 2: 14. 87el apsed 54%CPU
(256maj or +15156ni nor) pagef aul t s Oswaps
74.08user 1.56system 2:21. 39el apsed 53%CPU
(256maj or +15156mi nor) pagef aul t s Oswaps

2048 000

251. OOuser
(487maj or +1065900m nor) pagef aul ts Oswaps

137

median run time

120. 34system 4: 38: 10el apsed 2%PU

214.70user 86.19system 3: 01: 45el apsed 2%CPU

(486maj or +803641mi nor) pagef aul ts Oswaps

256. 03user 98.89system 4: 03: 21el apsed 2%CPU

(486maj or +880664m nor) pagef aul ts Oswaps

® Notice how the user time increases moderately and the system time explode

Next

Next

Q7

Making Programs Faster

Walt’s Dilemma

® My friend Walt wrote a program to solve a math puzzle

4767 -

O Find 'excellent numbers’ liké90476 or 48

19(F = 226576 - 36100 = 190476

82-42=64-16=48

® Walt's program had

sub square { return $_[0] * $_[0] }

® Sincesquar e was called a lot, he memoized it

® Now the program was slower

® Here's why

Next

9,

Copyright © 2003 M. J. Domint

139

Copyright © 2003 M. J. Domint

Next

Making Programs Faster

What's M emoization?

® Memoization replaces a functiérwith astub, m

® mmanages aache

o If the desired value df is in the cache, it is returned

O (Cache hit)

138

® If not,f is called and the value is stored in the cache

O (Cache miss)

® |tis a speed optimization - trades space for time

Next B7
Next Making Programs Faster
How Long Does It Take?

Copyright © 2003 M. J. Domint

140

® Question: Will the memoized function be faster than the original?

® |t depends on:
O How long the original function takes
O How oftenf is actually called

O How long the cache management takes

Next f’;Q 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 141

Cache Hit Rate
® Suppose we make some callsridhe stub
® We find that 37% of the time, the desired value is already in the cache
® The other 63% of the time, the réamust be called
® We have aache hit rate of 0.37
® Hit rate is always between 0 and 1
O 1: A cached value is available every times never called

O 0: The cached value is never there

Next 1@ 7 Copyright © 2003 M. J. Domint

Next Making Programs Faster 143

Time Savings
® his the hit rate
o f is the time it takes to call the original function
® K is the average cache management overhead
® Average time spent per call to (1-h) f + K
® The average time for thexmemoized function i$
® Time saved (per call) by memoizing- (1-h)f - K

O Equalshf -K

® hf is thebenefit. K is thecost.

® We wanthf >K

Next f&Q 7 Copyright © 2003 M. J. Domint

Next

Making Programs Faster

142

Timeto Call a Memoized Function

® Let's suppose we mak¢ calls tom

® Suppose the cache hit ratéhis

O Cachemissrate is 1h

O The real gets called abowd(1-h) times

® Suppose the average time foto execute i$

O Time spent irf is N(1-h)f

® Suppose the average time to manage the ca¢he is

O Time spent managing the cachéi§

® Total time spent foN calls:N(1-h) f + NK

O Average time per call: (h)f +K

Next

Next

For Example...

Time saved i$if - K

HR7

Making Programs Faster

® High cache hit raté leads to larger savings

Copyright © 2003 M. J. Domint

144

® Large function call overheaflleads to larger savings

® Large cache management overh&aeads to smaller savings

® Typically, handf are not under anyone’s control

® The best strategy for the authomefroi ze is to makeK as small as possible

Next

HR7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 145
For Example...
We win if hf >K
® Suppose hit ratkis 0 ?
Next ﬁ’;@ 7 Copyright © 2003 M. J. Domini

Next Making Programs Faster 147

For Example...
We win ifhf >K
® Suppose is really really small
® hf is even smaller
O Perhaps close to zero
® We can’t win in such a case
® As Walt unfortunately found out
® |n Walt's program,f was the time to do one multiplication
O This is a budget of time th&t must not exceed

O If K does even one multiplication, it blows the budget

Next ﬁ’;@ 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 146

For Example...
We win if hf >K
® Supposk is bigger tharf
® Buf hf is smaller thanf
® We lose!
® We can tolerate large cache management overhead...
O But only if the function takes a really long time
O If f is real big, it's easier to get a win

O In spite of a bigk

Next $&7 Copyright © 2003 M. J. Domini
Next Making Programs Faster 148
Devel : : DPr of

® Here’s the contents ofron. out
® First there’s a header section with metainformation:
#f O TyTwO
$hz=100;
$XS_VERS| ON=" DPr of 20000000. 00_01’ ;
Al values are given in HZ
$over _utinme=11; $over_stinme=1; Sover_rtine=12;
$over _t est s=10000;
$rrun_utime=746; $rrun_stinme=7; $rrun_rtinme=800;
$total _mar ks=33941
® shz is the clock resolution of the system
O Here one 'Hz’ is 1/100 second
® Thesover _ variables try to record overhead of checking the clock
O (u == user times == system time;, == real (wallclock) time)
O For example, 11/10000 user-seconds per call
® $rrun_ are the total times consumed by the sample run

® $total _marks is the total number of subroutine entries and exits

Copyright © 2003 M. J. Domint

Next (ngQ Z

Next Making Programs Faster 149 Next Making Programs Faster 150

Devel : : DProf parse_t ext

& 1b Mail::Header fold_length if (IMNIAZ])<([r<>]*)>8) {

+ 1b $seq = Pod::InteriorSequence->new

- 1b - name => $1,

.. -ldelim=>"<", -rdelim=>">",

& 21 Mail::Header _fnt_line -file = $file, -line => $line
+)

& 22 Muil::Header _tag_case $seq- >append($2) ;

+ 22 $seq- >nest ed($seq_stack[-1]) if @eq_stack > 1;
- 22 $seq_st ack[- 1] - >append($expand_seq

+ 1b ? &xseq_sub($sel f, $seq)
- 1b : $seq);

& 23 Mail::Header _fold_line }

+

@0 0 4 ® What was this about?
24 Mail::Header _insert ® We're building a tree dfod: : I nt eri or Sequence nodes

24 O In X<Y<...>>, nodey is a child of node

O The->nest ed call installs a pointer t& into Y

D b4 e
N
[

. . . Next (,JI;Q 7 Copyright © 2003 M. J. Domint
® &lines assign a new ID number to a subroutine

® +and- indicate that the subroutine was entered or exited

® @lines indicate that the indicated number of ticks elapsed since th@lifzest

Next f&Q 7 Copyright © 2003 M. J. Domini

Next Making Programs Faster 151 Next Making Programs Faster 152

Slide Manufacturing Slide Manufacturing

® nake-sl i des takes a single file with slides ® Smal | Prof does produce some useful results, however
O Slides are separated by rows of hyphens ® Here's the data sorted by CPU time:
i i i i count wall tm cpu time line
® Slides are written out to a series of separate text files 83 73. 67680 31 70000 987: system $ord:
1960 0.637309 0.340000 69: if (/A(\t|\s{5})/ && !($DI VERSI ONacti ve}
idei] 1896 0.659382 0.280000 94: if (/A-{12}/ || /7={32}/) {
O text2slide s run on each of these files 1960 0.307705 0.240000 68: s{%\wt) % {exists $macro{$1} ? $macro{$1} :
1813 0.330660 0.210000 210: S$accumul ated .= $_ unless $skip_this;
° 1960 0.275886 0.200000 83: if (SMACROS && s//\#MACRO\#\s+/T) {
There are some other features as well Toen 0. 275886 0. 200000 AR st
1960 0.250034 0.180000 91: next if /M#{3}/;
® Let's see what we can do with it 1813 0.290792 0.180000 202: if ($DI VERSI ON{act |ve) && (IN\#*|)
1897 0.284703 0.170000 92: last if /~-{50,}E
. X . 524 0. 464508 0.150000 74: $l engt h =3vm!Ie/ VAW | \]\w]/xg
® Unfortunately it has few subroutines,ovel : : DPr of isn't much help 524 0.233224 0.100000 73: $length -= 2 while / \[\[[\] \]/xg
Total H apsed Time = 60.50918 Seconds ® Clearly, run time is dominated by line 287
User +System Time = 0.799279 Seconds
Excl usive Times =
9% me Excl Sec Qmul S #Cal | s sec/call Csec/c ne 285 ny Send qa $T)S(Zt2\|;ral':\/|_'\geDn(F::l RST FI LE=$firsthtn
6.26 0.050 2 0.0250 0.0248 B - =)
0.00 0.000 0_ 000 2 0 0000 --setvar MID_LAST_FI LE=$| ast ht m
0.00 0.000 -0.000 2 0.0000 --setvar MID_NEXT_FI LE=$next ht m
0.00 0.000 -0.000 1 0.0000 - : --setvar MJD_PREV_FI LE= $prevht m
0.00 0.000 -0.000 1 0.0000 - strict::bits --setvar MJD SLI DE NUMBER=$s! i deno

--title '$title $slide > $htm};
286 # print STDERR "Conmand: $cnd\n";
287 system $cnd;
Next 1@ 7 Copyright © 2003 M. J. Domint
® There's probably not too much we can do about this

Next %Q 7 Copyright © 2003 M. J. Domini

Next

Next

Making Programs Faster

153

Mail Folder Analyzer Revisited

® Now that we've sped up the analyzer by a factor of 6, let's see what else we «

® We'll rerun the test under the profiler

% per| -d:DProf nfa2.pl
% dpr of pp

Total Elapsed Tine
User +System Ti ne

Excl usi ve Tines
9di me Excl Sec Cunul S #Cal | s sec/
2 109 .

63.7 0.830 0.829 0
13.8 0.180 0.180 1 0
4.61 0.060 0.130 3 0.
4.61 0.060 0.887 109 0.
2.30 0.030 0.030 1 0
2.30 0.030 0.040 5 0.
0.77 0.010 0.010 3 0.
0.77 0.010 0.010 2 0.
0.77 0.010 0.010 4 0.
0.00 0.000 -0.000 3 0.
0.00 0.000 -0.000 3 0.
0.00 0.000 -0.000 2 0.
0.00 0.000 -0.000 1 0
0.00 0.000 -0.000 1 0.
0.00 0.000 -0.000 2 0.

1.492102 Seconds
1.302102 Seconds

call
0076

MBOX > /dev/null

Nane

main::letter_histogram

il::Wil::read_nbox

::BEGN

mai n: : handl e_message

war ni ngs: : BEG N

Mail::Util::BEGN

Aut oLoader : : BEG N
in::pairify

1 BEG

register::inport
war ni ngs: : regi ster:: mkMask

® We see thatet t er _hi st ogr amis run 109 times at 7.6 ms each

O This is 64% of the remaining run time

Next

The 64% Question

Making Programs Faster

9di me Excl Sec Cunul S #Cal | s sec/call Csec/c

63.7 0.830 0.829 109

Copyright © 2003 M. J. Domint

155

Nane

0.0076 0.0076 main::|letter_histogram

® | said "This is 64% of the remaining run time"

O Why 64% and not 63.7% ?

® The total run time was about 1.22 CPU seconds

O The resolution of the measurements was only 0.01 second

O The resolution of thedi me column is therefore 0.81%

® |t's like announcing that "85.714% of surveyed respondents prefer Perl to Pyt

O Sounds really precise

O But what you actually mean is "6 out of 7"

® That63. 7%actually means "83 out of 122"

O Or perhaps "somewhere between 62.9 and 64.5%"

® The percentages are reported with eight times more precision than the measi

actually have

Next

Q7

Copyright © 2003 M. J. Domint

Next

Making Programs Faster

Thelnnermost L oop

9di me Excl Sec Cunul S #Cal | s sec/call Csec/c
0.0076 0.0076 main::|letter_histogram

63.7

0.830 0.829

109

® This is a typical situation

Nane

154

O Often, a program is structured as a series of nested loops

® For example, this program:

O For each input file,

B For each message in the file,

B For each character in the file

B Append it to the histogram.

® The code inside the innermost loop gets run many, many times

O Here, once for each character in the entire input

® Other parts of the program are run much less frequently

Next

Next

O A small speedup in this innermost loop can have a disproportionate effec
run time

Q7

Making Programs Faster

The 64% Question

® Scientists and engineers are trained to deal with this

Copyright © 2003 M. J. Domint

156

O They know that 3 meters is different from 3.000 meters

O One was measured to a precision of 1 meter, the other to a precision of :

® They get training in how to calculate with imprecise measurements

® Computer programmers are not usually so trained

® | would like to see CS curricula revised to fix this

O How to represent and understand the error ranges

O How to present the answers without lying

® | would like to see computer 'science’ as a real science

Next

Q7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 157 Next Making Programs Faster 158

The90-10 RuleIn Action The90-10 RuleIn Action

® Counting modules, the program has 2,848 lines of code ® Perhaps counting modules biased the numbers?
O (I didn’t count whitespace, comments, POD, lines with just braces, etc.) Subrouti ne time %ime cum lines cum (%
| etter_histogram .76 79.2 79.2 3 3 5.9
: . . BEG N .10 10.4 89.6 13 16 31.4
Subroutine %ime cum l'ines cum cuntb handl e_nessage 09 94 99.0 7 23 45 1
. i report .01 1.0 100.0 20 43 84.3
Mot foldline 203 1 a8 o8 e from hi stogram J00 0.0 100.0 3 46 90.2
: hi st_ogram 122 66: 9 3 85 3: 0 pairify .00 0.0 100.0 5 51 100.0
M : insert 6.6 73.5 22 107 3.8 . . .
M Xt ract 58 793 16 123 4.3 ® No, we still have 6% of the code accounting for 80% of the run time
M : tag_case 5.3 82.6 6 129 4.5
M : old_l ength 5.3 87.9 15 144 5.1
M : old 3.7 91.6 13 157 5.5 q X .
M : ead_nbox 2.4 94.0 21 178 6.3 Next XY Copyright © 2003 M. J. Domini
M: BEG N 1.4 95.4 18 196 6.9
® 7% of the code accounts for more than 95% of the run time
O 5% of the code accounts for more than 80% of the run time
Next f&Q 7 Copyright © 2003 M. J. Domint
Next Making Programs Faster 159 Next Making Programs Faster 160
Error Variation Error Variation
® | ran five identical runs of the same program on the same input: Date: Tue, 1 Jan 2002 14:46:06 +0100)
Subject: Re: How can | deternine a O byte File
User +System Tine = 1.252102 Seconds Message- 1 d: <aOseef $668$05%1@ews. t - onl i ne. con»
User +System Ti me = 1. 260666 Seconds .
User +System Time = 1. 280666 Seconds timet hese($count, {)
User+System Tine = 1.319948 Seconds sstat’ => sub { (stat($filenanme))[7] },
User +System Time = 1. 309948 Seconds 2 =>sub { -z $filename },

=>sub { -s $filenane },

® That's more than 5% variation RN
) Benchmark: timng 100000 iterations of s, sta z...
% me Excl Sec Cumul S #Cal | s sec/call Csec/c Name s: 48 wal | cl ock secs (11.49 usr + 29.25 sys = 40.74 CPY)

65. 4 0.820 0.819 109 .0075 0.0075 main::|etter_histogram @ 2454. 65/ s (n=100000)
63.4 0.800 0.799 109 0 0073 0.0073 main::|etter_histogram stat: 53 wallclock secs (14.21 usr + 30.65 sys = 44.87 CPU)

62.4 0.800 0.799 109 0.0073 0.0073 nmin::|etter_histogram
65.1 0.860 0.859 109 0.0079 0.0079 mmin::letter_histogram @2228.91/s (n=100000)
64.8 0.850 0.849 109 0.0078 0.0078 main::|etter_histogram z: 50 wal I cl ock secs (11.66 usr + 29.76 sys = 41.42 CPY)

@ 2414. 35/ s (n=100000)
® Ditto
Stat indeed seens to be a little slower...

. ion: ’ ith i . .
Conclusion: Don't put any faith in the exact numbers @ | think that's the wrong conclusion

® Corollary: If someone tells you thatis 5% faster thalv, ignore them but then if -s is faster than -z. the whole difference

may be within the error margin.

Next ﬁJ;Q 7 Copyright © 2003 M. J. Domini ® | think that's the right conclusion

Next ﬁ’;@ 7 Copyright © 2003 M. J. Domini

Next Making Programs Faster 161

Mail Folder Analyzer Revisited
® Back to the MFA

® The profiler says thatai n: : | ett er _hi st ogr amis consuming most of the CPU
time
9 me Excl Sec Cunul S #Calls sec/call Csec/c Name

63.7 0.830 0.829 109 0.0076 0.0076 main::letter_histogram
13.8 0.180 0.180 1 0.1800 0.1800 Mail::Util::read_nbox

® A 20% speedup in this one function would reduce the program’s run time by :

sub | etter_histogram {
ny $strdex = (length $_[0])-1;
$letter_hist{substr($_[0],$_, 1)} ++
}

® Perhaps loop over the characters directly

for (0..$strdex);

O Instead of looping over .. $strdex and indexing the string?

sub | etter_histogram {

$letter_hist{$_}++ for split //, $_[0];

}

Before After

real on2. 739s real Onb. 379s

user onmil. 270s user on. 410s

sys onD. 040s sys 0onD. 040s

® Well, that didn’t work

Next %Q 7 Copyright © 2003 M. J. Domini
Next Making Programs Faster 163
Good Advice

® Actually in 1998 | had a little more to say:

Worrying about optimization at this level is just silly. Write the
program. If it is unacceptably slow for your real application, th
benchmark it, and then look at ways to make the slow parts fa

® | think this is the best general advice you can get about optimization

O Hence this class

Next f’;Q 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 162

| etter_histogram

sub | etter_histogram {
ny $strdex = (length $ [0])-1;
$letter_hist{substr($_[0],$_,1)}++
}

® Perhaps we could get a speedup by avoiding the repeated array loa& on

for (0..$strdex);

sub letter_histogram {
ny $msg = shift;
ny $strdex = (length $nsg)-1;

$l etter_hist{substr($nsg, $_, 1)} ++ for (0..$strdex);

® Cost:shi ft plus an extra copy of the data

Before After

real ontl. 277s real Onil. 236s
user onmil. 250s user oml. 220s
sys onD. 020s sys onD. 010s

® No significant difference
O Perhaps it really is .04 ms faster
O But who the heck cares?
® Other things | tried:
O Use@etter_hist instead obs et t er _hi st

O Calll etter_hi st ogramonce on entire mbox instead of on each message

Next %Q 7 Copyright © 2003 M. J. Domint
Next Making Programs Faster 164
Good Advice

® Here’'s some advice that is more Perl-specific

If you're worried about the slowness of twigens and a enane, why
aren’t you worried about the much greater slownegsrof?

® |t's important to keep these things in perspective

O If you're really worried about the cost of a singknane, you are using the
wrong language

int main(void) { ny $total;
int i, j; for (0 .. 999) {
long total; $total = O;
for (i=0; i<1000; i++) { for ny $j (0 .. 999) {
total = 0; $total += $j;
for (j=0; j<1000; j++) { }
total +=j; }
print $total, "\n";
}
printf("%d\n", total);
real onD. 071s real on®. 493s
user onD. 060s user on2. 340s
sys onD. 000s sys onD. 020s

® The C version was5 times faster

Next f’;Q 7

Copyright © 2003 M. J. Domint

Next Making Programs Faster 165

Good Advice

® Donald E. Knuth, a famous wizard, is fond of saying:
Premature optimization is the root of all evil.
® Here's some context:

There is no doubt that the "grail" of efficiency leads to abuse

Programmers waste enormous amounts of time thinking abot

worrying about, the speed of noncritical parts of their programs

such attempts at efficiency actually have a strong negative im

when debugging and maintenance are consideresghtid forget

about small efficiencies, about 97% of the time. Premature
optimization is the root of all evil.

® He continues:

Yet we should not pass up out opportunities in that critical 3%.

programmers will not be lulled into complacency by such reaso

they will be wise to look carefully at the critical code; but cafter
the critical code has been identified.

Next f&Q 7 Copyright © 2003 M. J. Domini

