Red Flag Summary

June 2, 2002

REPEATED CODE

Symptom

The same code appears twice.
Generic Treatment

Most all features of languages and many features of operating systems exist
primarily to reduce repeated code. Investigate how similar problems have been
solved in the past.
Small-Scale Treatments

Assignment operators:

before # after
$x->{q} = $x->{q} * 1.03; $x->{q} *= 1.03;

The x operator:

before # after

Qa = ($z, $z, $z, %y, Sy, $y); a = (($2) x 3, ($y) x 3);
before # after

Qa = ($z, $y, $z, 3y, $z, $y); Q@a = ($z, $y) x 3;

Small-scope temporary variables:

before
if (($zr{$ml{aban_TopIltem_id_toptem}}{ibeg}
eq $zr{$ml{aban_TopItem_id_toptem}}{iend}) &&
($zr{$ml{aban_TopItem_id_toptem}}{ibeg} =~ /\.5/)) {
$zr{$ml{aban_TopItem_id_toptem}}{begl} =
($zr{$ml{aban_TopIltem_id_toptem}}{ibeg} - .5);
$zr{$ml{aban_TopItem_id_toptem}}{end}
($zr{$ml{aban_TopIltem_id_toptem}}{iend} + .5);
$zr{$ml{aban_TopItem_id_toptem}}{lop}

}
else {
$zr{$ml{aban_TopItem_id_toptem}}{beg}
$zr{$ml{aban_TopItem_id_toptem}}{ibeg};
$zr{$ml{aban_TopItem_id_toptem}}{end}
$zr{$ml{aban_TopItem_id_toptem}}{iend};
$zr{$ml{aban_TopItem_id_toptem}}{lop} L7

}

after
{ my $ID = $ml{aban_TopItem_id_toptem};
my %zrh;
$zr{$ID} = \lzrh;
if (($zrh{ibeg} eq $zrh{iend}) && ($zrh{ibeg} =~ /\.5/)) {
$zrh{beg} = ($zrh{ibeg} - .5);
$zrh{end} = ($zrh{iend} + .5);
$zrh{lop} = ""°";

}
else {
$zrh{beg} = $zrh{ibeg};
$zrh{end} = $zrh{iend};
$zrh{lop} = ’..7;
}
}
Medium-Scale Treatments
Use a loop:
before
codel
code?
code3
code4d
codeb
after
for (1..5) {
code$_
};

Use a subroutine:

before
if {

CODE
} else {
CODE
e

after
if {

func(...);
} else {

%ﬁgc(...);

sub func {
CODE

In programs written in an object-oriented style, use an inheritance or dele-
gation structure.
Large-Scale Treatments

Factor the repeated code into a new module.

Turn the repeated code into a separate program and use an IPC mechanism
(files, pipes, sockets shared memory, etc.) to commonucate with it.

Arbitrary Numeric Constants

Symptom

Numeric constants other than 0 and 1.
Treatment

Try to generalize the code to reduce the dependence on the constant. Where
does it come from?

If it’s in the outside world, comment it.

86400 = number of seconds in a day
$days = time() / 86400;

If it’s in the problem specification, add an abstraction such as a named
constant:

The data file format specification says that the file
will always have exactly four ACCOUNT sections
$num_account_sections = 4;

If it’s an unwarranted assumption, fix it, or add an assertion to check for it:

die "Input was supposed to have one section per month, has \$sections instead"
unless $sections == 12;

Array length variables
Symptom

$array[$i++] = VAL;
Treatment

push Qarray, VAL;

Backslashed double-quote
Symptom
PP L NP

Treatment

qg{..."..."...}

Comments (in general)
Symptom
IMPORTANT: values of beta will give rise to dom!

Treatment
Folks tell you that if you do anything tricky or peculiar, you should put in
a comment to explain. But it’s better if you can find a way to accomplish the
same goal without doing anything tricky or peculiar. Good code explains itself.
Safe uses for comments are at the head of a function or module to explain
what it does, how to call it, and what it returns, and comments explaining the
purpose of a variable and what kind of values it will take on.

Comments, End-Of-Block

Symptom
} # end of while statement

Treatment

Be sure the block is indented properly. Braces should line up consistently.

If the block is properly indented, then this comment probably means the
block is too large, too complicated, or both. Turn some of the code into one or
more subroutines and call the subroutines from the block.

If the code is too tangled to be factored into subroutines, then nobody was
able to understand it anyway. It should be rewritten.

Finally, if you are still having trouble figuring out which brace goes with
which, get a better editor program. Programming editors will tell you automat-
ically which braces match which others.

Comments, Excessively Decorated

Symptom

Treatment

Construct Qa

The concatenation operator . (and , in print)
Symptom

"foo/[".$x[$y]."Ibar:".$z->{blah}."\n"

print "\n";
Treatment

"£00/ [$x[$y]1bar:$z->{blah}\n"

print "\n";

The Condition that Ate Michigan

Symptom

sub func {
if ($condition) {

}
}

Treatment

sub func {
return unless $condition;

}

Also see Unbalanced if—else Blocks, below.

C-style for loop and loop counter variables

Symptom
for ($i = 0; $i < Qarray; $i++) {
... $array[$i]
}
Treatment

for my $item (Qarray) {
... $item ...

}

If you really need $i not just for indexing the array, but for some numeric
purpose inside the loop (for example, for printing out a numbered list of ele-
ments) then it’s still preferable to use:

for my $i (0 .. $#array) {

... $array[$il
}

Empty if and else blocks

Symptom
if ($condition) { if ($condition) {
} else { ... statements ...
. statements ... } else {
} }
Treatment
unless ($condition) { if ($condition) {
. statements statements ...
} }

Families of related variable names
Symptom

my ($iteml, $item2, $item3, $itemd, $itemb, $item6, $item?,
$item8, $item9, $item10, $itemll, $iteml2, $iteml3,
$item1d, $iteml5, $itemilB);

my ($user_name, $user_age, $user_city, $user_state,
$user_phone_number $user_hair_color,
$user_first_visit_date, $user_number_of_nostrils);

Treatment

my (@item, Juser);

File-scope lexicals
Symptom
my ($x, $foo, ¥%bar, ...)

at the top of the file

Treatment
Restrict scope of variables where possible.
See ’Global variables’ below.

Global variables

Symptom
Program doesn’t run under ’strict vars’
Treatment
Redesign functions. Generalize functions. Use standard functional argument
passing and value return techniques. Declare global variables as small-scope
lexicals where possible.
Leaning toothpick syndrome
Symptom
if (/\/usr\/local\/lib\/per1i\//) { ... }
s/\//-/;

Treatment

if (m{/usr/local/lib/perl/}) { ... }

s{/H-};

Many consecutive prints

Symptom
print "...\n";
print "...\n";
print "...\n";
print "...\n";
Treatment
print qqf{...
3

Making two passes
Symptom

Two nearby loops over the same file, hash, or array. Preprocessing phases.
Treatment

Try to merge them into one loop. But this may complicate the code exces-
sively, so be sure to Try it Both Ways. Only merge the passes if it simplifies
the code.
Many very long strings
Symptom

print qqf{...

b
Treatment
Store strings in files. Use template modules where appropriate.
Single scalar variable in quotes
Symptom
"$foo"
Treatment

$foo

Special Case Tests

Symptom
A large block of code inside an if block with no else:

if (@items > 0) {
for (@items) {

}
}

Treatment

Ask “What would break if I got rid of the test?” If the answer is “Nothing”,
then get rid of the test.

If not, see The Condition That Ate Michigan, above.

Taking two steps forward and one step back

Symptom

Code whose only purpose is to undo the work done by other code
Treatment

Use more variables. Save the original, unchanged version of the data instead
of changing it and then changing it back again.

Testing a boolean value against 0 or 1

Symptom

if (-d foo==1) { ... }

if (foo() == FALSE) { ... }
Treatment

if (-d foo) { ... %}

if (1foo()) { ... }

Unbalanced if-—else Blocks
Symptom

if (CONDITION1) {
if (CONDITION2) {
if (CONDITION3) {
ACTION;
} else {
warn ERROR3;
}
} else {
warn ERROR2;
}
} else {
warn ERROR1;
}

10

Treatment

unless (CONDITION1) {
warn ERROR1;
BREAK ;

}

unless (CONDITION2) {
warn ERROR2;
BREAK;

}

unless (CONDITION3) {
warn ERROR3;
BREAK;

}

ACTION;

BREAK here represents a non-local jump operator, such as next, last, return,
die, or exit, as appropriate. If none of these will solve the problem, it is of-
ten appropriate to move the entire structure into a new subroutine and to use
return.

After rewriting the nested block, check to see if two or more unless sections
can be combined into one using the && or || operators.

else with unless
Symptom

unless ($condition) {

code A ...
} else {
code B ...
}
Treatment

if ($condition) {
code B ...
} else {
code A ...

11

Variable use immediately follows assignment
Symptom

$x = EXPRESSION;
if (¢x) { ... }

and then $x is never used again
Treatment

if (EXPRESSION) { ... }

12

