Next Higher-Order Parsing 1 Next Higher-Order Parsing 2

Parsing systemsin functional
programming languages

Warning
® Code examples in this talk will be in Perl
Mark Dominus

Copyright © 2007 M. .

Plover Systems Co.

nj d- per | - hop@l over.com

Version 1.0

February, 2007

2% Dominus

Next Higher-Order Parsing 3 Next Higher-Order Parsing

Warning Parsing
® This is aboutfunctional programming languages ® Parsing is the process of taking an unstructured input
® SML, Haskell, Perl, etc. O Such as a sequence of characters
O A lot of this stuff will be difficult or impossible in C, Java, etc. ® and turning it into a data structure
® Too bad O Such as a record

O or an object

ext .
e Dominus O oravalue

® For example, read a configuration file

O build an object that represents the configuration

Copyright © 2007 M. .
Dominus

Next Higher-Order Parsing 5 Next Higher-Order Parsing 6

Every program parses Open vs. closed systems
® This is a rudimentary parser: ® Some people likelosed systems
while (read a Iine of input) { O The system should just do all the stuff you need it to
do sonmething with it
} O It should have a feature for every use-case
® The program must here convert an unstructured character stream into a seqt o) o]
lines O You should be able to use it without understanding what it is doing
® As the input you're parsing becomes more complicated, the code becomes rr O Example: Microsoft Windows
elaborate
® At some point it may exceed your ability to keep up with ad-hoc mechanisms Next 'mﬁ Copyright © 288;%;

® So we have parsing systems lijkesc andPar se: : RecDescent

Copyright © 2007 M. .
Next VFiISEE: Domins

Next Higher-Order Parsing 7 Next Higher-Order Parsing 8

Open vs. closed systems Open vs. closed systems

® | preferopen systems ® Benefit of open systems:
O The system should provide modules for doing simple common things O Flexible, powerful, unlimited
O The modules should be composable into specialized assemblages ® Drawback:
O It should be possible to assemble a solution for every use-case O Requires more understanding
O It should be easy to build new modules ® \We're going to see an open OREP: : Par ser

O Example: Unix

Copyright © 2007 M. .
Next ViIFEE: Dorints

s Dominus

Next Higher-Order Parsing 9 Next Higher-Order Parsing 10

Example: graphing program Example: graphing program
® Suppose we want to read a web user’s input ® In Perl:
O It will be a mathematical function, like my $function = eval $code;

ny $y = $function->($x);

A2 + 3*X)* si *2) + 14 ; ;
(x x)* sin(x) ® | don't need to explain all the things that can go wrong here, do I?

® \We will emit a web page with a graph of their function .]
® Even if it could be made safe, it has some problems:

® In Perl, there is an easy solution: .
(x"2 + 3*x)* sin(x * 2) + 14

O Useeval to turn the input string into compiled Perl code @ In Perl.» means bitwise exclusive or

® You could imagine something similar for almost any language: O Not exponentiation

O Write out a source code file with a suitable function in it e Alternative: implement an evaluator for expressions

O Embed the user input in the appropriate place in the file O Then we can give any notation any meaning we want

e Dominus

O Compile the file and execute the resulting binary

1% Dominus

Next Higher-Order Parsing 11 Next Higher-Order Parsing 12

Grammars L exing

atom & arr; NUMBER | VAR | FUNCTION "(" expression ")" ® First, our program must identify things likeVBER

factor &arr; atom ("~" NUMBER | not hing) e Idea: preprocess the input

term→ factor ("*" term| nothing) . o .
O Turn it from a character string into a listtokens
expression &arr; "(" expression ")"

| term ("+" expression | nothing) O Each token is an atomic piece of input

N 'mﬁ Copyright © 2007 M. . O Examplessin, x, +, 12345
ext h
s Dominus

® Humans do this when they read
O First, turn the sequence of characters into a sequence of words

O Then, try to understand the structure of the sentence based on meaning:
words

® This is calledexing

s Dominus

Next Higher-Order Parsing

L exing
® | will omit the arcane but tedious details of building a lexer
® See for exampl&he Unix Programming Environment by Kernighan and Pike

® We will assume that the lexer returns tokens like this:

1234 ["NUMBER', 1234]
sqrt ["FUNCTI ON', "sgrt"]
x3 ["VAR', "x3"]

A [n/\u]

** ["~"]

+ ["+]

* ["*"]

(["("]

) [")"]

® Notice how the lexer can recognize botand** and eliminate the distinction

O This saves work in the parser
® Also notice that * is lexed as a power operator, not as two multiplication signs
® We will imagine that our lexer scans the entire input immediately

O Returns a linked list of all tokens

ViIcEE:

Copyright © 2007 M. .

Next Dominus

13 Next

Higher-Order Parsing 14

Recur sive-descent parsing
® Each grammar rule has a corresponding function
O The job of the functioexpr essi on() is to parse an expression
O If it succeeds, it returns a data structure representing the expression
O If not, it returns a failure indication

Suppose you have a rule like this:

expression &arr; "(" expression ")"

| term ("+" expression | nothing)

You will have functions calledxpr essi on() andtern()
expr essi on() gets the token list as an argument
It looks to see if the next token(is

O If so, it calls itself recursively, and then looks for the

Otherwise it calls er m() to look for a term
O If term() fails,expression() does too

O Otherwise it looks to see if there’s-aign and another expression

VIFESE:

Copyright © 2007 M. .

Next Dominus

Next

Higher-Order Parsing

Recur sive-descent parsing

® The description on the previous slide sounds complicated

® But there are only a few fundamental operations:

O Look for a certain token
O Look for either ofx ory
O Look for x followed byy

O Look for nothing

15

® A HOP: : Par ser parser will be a function that takes a token list

Next

O It examines some tokens

O If it likes what it sees, it constructs a value

O Then it returns the value and a list of the remaining tokens

O Otherwise, it returnsndef (Perl "null" value)

ViIsEE:

Copyright © 2007 M. .
Dominus

Next

Higher-Order Parsing

Basic parsers

expression &arr; "(" expression ")"
| term ("+" expression | nothing)

® The simplest parser is the one that corresponadstta ng

® |t consumes no tokens and always succeeds:

sub nothing {
ny $tokens = shift;
return (undef, $tokens);

® This parser function gets a token list

O It examines the tokens

O Returns a value and a new token list

® Theundef here is a dummy value

Next

O The new token list is the same as the old one

ViIcEE:

16

Copyright © 2007 M. .
Dominus

Next Higher-Order Parsing 17 Next Higher-Order Parsing 18

Token parsers Token parsers
® The next simplest parser looks for a particular token: ® |n functional languages, we needn’t write write 9 similaskf or functions
sub | ookfor_PLUS { ® Instead, we can have another function build them as required:

ny $tokens = shift;

ny $tok = first($tokens);

if ($tok->type eq "+") {
return ("+", rest($tokens));

sub | ookfor {
ny $target = shift;

} else { ny $gagser
. ’ su
) return; # failure ny $tokens = shift;
} ny $tok = first($tokens);
if ($tok->type eq $target) {
sub | ookf or _NUVBER { return ($tok->val ue, rest($tokens));
- } . } else {
ny Stokens = shift; return; # failure

nmy $tok = first($tokens);
if ($tok->type eq "NUMBER') {

return ($tok->val ue, rest($tokens));
} else {

return; # failure

} : ® Now instead of ookf or _PLUS we just use ookf or (" +")

return $parser;

® Note that the "value" returned byokf or _NUMBER is the value of the number tok @ Instead of ookf or _NUMBER we just use ookf or (" NUVBER")

it finds
Copyright © 2007 M. . D& Dominus
Nex VISESE: Do

Next Higher-Order Parsing 19 Next Higher-Order Parsing 20

Concatenation Concatenation
® |et's pretend for a bit thatt omhas only this one rule: sub conc {
n @ = @;

ny $parser = sub {
ny $tokens = shift;
nmy @esults;

for ny $p (@) {
ny ($result, $t_new) = $p->($t okens)

atom & arr; "FUNC' "(" expression ")"

® We could writeat on() like this:

sub atom { or return; # failure
ny $t1 = shift; push @esults, $result;
nmy ($expr, $t2, $t3, $t4, $t5); $t okens = $t _new,
}
if (($funcnane, $t2) = | ookfor("FUNC')->($t1)
&& (undef, $t3) = lookfor("(")->($t2) # all parsers succeeded
&& ($expr, $t4) = expression($t 3) return (\@esults, $tokens);
&& (undef, $t5) = lookfor(")")->($t4)) { ;
ny $val = sonething involving $funcname and $expr; return $parser;
return ($val, $t5); }
} else {
) return; # failure ® With this definition,at omsimply becomes:
} $at om = conc(| ookfor ("FUNC"),
. . . . I ookfor("("),
® Most of our parser functions would look something like this $expr essi on,

I ookfor(")"),
® So instead we'll write a function that assembles small parsers into big ones ;

® Given parser functiond, B, etc.: Copyright © 2007 M

conc(A B, ...)

® Will return a parser function that looks for A, then B, etc.

2% Dominus

Next Higher-Order Parsing 21 Next Higher-Order Parsing 22

Concatenation Alternation
® Similarly, the rule ® Atoms come in three varieties, not just one:
expression &arr; "(" expression ")" atom & arr; NUMBER | VAR | function "(" expression ")"
® Translates to: ® So we need thet omparser to try these three different things
$expression = conc(l ookfor (" ("), ® |t fails only if the upcoming tokens match none of them
$expr ession,
| ookfor(")"),

® Something like this:

1

® Oops, no, not quite sub atom{
ny $in = shift;
; P It, t);
® |n better functional languages, this is no problem gyy g'rteguz Coﬁgtj| z)okf or ("FUNC')
l ookfor("("), $Expression, lookfor(")"),
® Even in Perl, this is fixable—but | don’t have time to fix it ;

if (($result, $out) = | ookfor("NUVMBER')->($in)) {
) return ($result, $out);
Next 'mﬁ Copyright © 2007 M. . } elsif (($result, $out) = Iookfor("VAR')->($in)) {
DL Dominus return ($result, S$out);
} elsif (($result, $out) = $alt3->($in)) {
return ($result, $out);
} else {
return;
}

}

® But again, we'd have to write a lot of code that was very similar
® So instead we’'ll write a function that assembles small parsers into big ones
® Given parser function4, B, etc.:

alt(A B ...)

® Will return a parser function that looks for A or for B, etc.

Copyright © 2007 M. .

Next Higher-Order Parsing 23 Next Higher-Order Parsing 24
Alternation Parsers
Suﬁyalé) { @ ® With this definition, a complete definition af on() is:
nynipgirﬁerz :h??? { $at om = al t (| ookf or(:: NUMISER"),
for ny $p (@) { | ookf or (VAR') .
if (ny ($result, $out) = $p->($in)) { cone(l ggt;g{E(FU;\‘C)
} return ($result, S$out); $EXpr essi on, '
I ookfor(")"),
return; # failure ;
return $parser: ® Similarly, here’sf actor () :
factor &arr; atom (""" NUMBER | not hing)
; $factor = conc($Atom alt(conc(l ookfor("""),
PISEBES ooy, okt o - e)

Next

\ ¬ hi ng));
® Here'stern():

term&arr; factor ("*" term| nothing)

$term = conc($Factor, alt(conc(lookfor("*"),

\ ¬ hi ng));

ViIFEE:

$Term,

Copyright © 2007 M. .
Dominus

Next Higher-Order Parsing

Parsers

® Here’'sexpression():

expression &arr; "(" expression ")"

| term ("+" expression | nothing)
$expression = alt(conc(lookfor("(")),

$Expr essi on,

I ookfor(")"),

conc($Term
al t (conc(| ookfor("+"), $Expression),
\ ¬ hi ng));

® This doesn't look great, but:
1. When you consider how much it's doing, it's amazingly brief, and

2. We can use operator overloading and rewrite it as:

$expression = L("(") - $Expression - L(")")
| $Term- (L("+") - $Expression | $nothing);

25 Next Higher-Order Parsing 26

Overloading

expression → "(" expression ")"
| term ("+" expression | nothing)

$expression = L("(") - $Expression - L(")")
| $Term- (L("+") - $Expression | $nothing);

® This looks almost exactly like the grammar rule we're implementing
O But it's actually Perl code, not a limited sub-language
® We can do similar tricks in SML or Haskell

® |'ll use this notation from now on

Copyright © 2007 M. .
Dominus

Copyright © 2007 M. .
Dominus

Next Higher-Order Parsing 27

Parsers
® So far we've done a bunch of work to build a parser system
® |t has some modular, interchangeable parts
O We can use these to manufacture all kinds of parsers

® Our system is only getting started

Copyright © 2007 M. .

Next Higher-Order Parsing

Optional items

28

® Many rules are naturally expressed in terms of "optional" items

® Instead of:
termé&arr; factor ("*" term| nothing)
® \We might want to say something like:

term & arr; factor optional ("*" term

We can definept i onal quite easily:

sub optional {
ny $p = shift;
return alt($p, $nothing);

Now this:
$term= $Factor - (L("*") - $Term | $nothing);
® Becomes this:

$term = $Factor - optional (L("*") - $Term;

Copyright © 2007 M. .
Dominus

Next Higher-Order Parsing

r epeat
® Many rules are naturally expressed in terms of "repeated" items

® For example, we might write

termé→
$term = $Factor -

factor repeat("*" factor)
repeat (L("*") - $Factor);

® |t's not hard to expresspeat with what we have already:
repeat ($p) is:

$p - repeat($p) | $nothing
® But we can wrap this up as a function:

sub repeat {

ny $p = shift;

ny $repeat_p;

ny $do_repeat_p = sub { $repeat_p->(@) }; # proxy
$repeat _p = alt(conc($p, $do_repeat_p), $nothing);

return $repeat_p;

Copyright © 2007 M. .

Next Dominus

VISESE:

29 Next

Next

Higher-Order Parsing 30

Lists
® Comma-separated expression lists are common in programming languages
® Similarly semicolon-separated statement blocks

® Or...

sub list_of {
ny ($item $separator) = @;
$separator = | ookfor("COMA") unl ess defined $separator;

conc($item repeat($separator, $itenm), optional ($separator));
® Now comma-separated lists:
$list = conc(lookfor("("),
i st_of ($Expression),
I ookfor(")"));
® Semicolon-separated statement blocks:
$bl ock = conc(l ookfor("{"),
list_of ($Statenent, |ookfor(";")),
I ookfor("}"));

Copyright © 2007 M. .
Dominus

ViIFEE:

Next Higher-Order Parsing 31 Next Higher-Order Parsing 32
Operators New tools
® Parsing arithmetic-type expressions is not too uncommon ® \We've built all this up just by gluing together a very few basic tools:
® A useful utility is anoper at or function: I ookf or ()
conc()

$expression =

oper at or ($Term [lookfor(['OP", "+]), sub { $_[0] + $_[1] }
[lookfor(['OP, "-'1), sub { $_[0] - $_[1] }
$term =
operator($Factor, [lookfor(['OP, "*']), sub { $ [0] * $ [1]
[lookfor([*"OP, */*]), sub { $ [0] / $_[1] }

® This little bit of code writes a function that parses an inputdike 3 * 4 and
calculates the result (14)

® For technical reasons, gettingand/ to work requires some tricks

O The complications are encapsulated insidepef at or

O We don't have to worry about them

Copyright © 2007 M. .
Dominus

Next

al't()

® But the tools themselves are simple
O only about 25 lines of code, total
® |f we need some new tool, we can build it

® For example, "look foA, but only if it doesn’t also look likB":

sub this_but_not_that {
ny ($A, $B) = @;
ny $parser = sub {
ny $in = shift;
ny ($res, $out) = $A->($in)
or return;
if ($B->($in)) { return; }
return ($res, $out);

return $parser;

Copyright © 2007 M. .
Dominus

ViIFEE:

Next Higher-Order Parsing

New tools

® Or "do whatA does, but transform its result value somehow":

sub transform {
ny ($A, $transfornm) = @;
ny $parser = sub {
ny $in = shift;
ny (res, Sout)
or return;
return ($transform>($res), $out);
I
}

= $A->($in)

Next Copyright © 2007 M. .

ViIsEE:

33 Next

Dominus Next

Higher-Order Parsing 34

New tools

® Or "do whatA does, but only if the result satisfies some condition":

sub side_condition {

ny ($A, $condition) = @;

ny $parser = sub {
ny $in = shift;
ny (res, Sout)

or return;

unl ess ($condition->($res)) { return; }
return ($res, $out);

= $A->($in)

Copyright © 2007 M. .
Dominus

ViIcEE:

Next Higher-Order Parsing

New tools

35 Next Higher-Order Parsing 36

® In my bookHigher-Order Perl, | put the same tools to work parsing very differe

sorts of input

® Example: Take an outline:

Languages
Functi onal
Haskel |
| mperative
. C
Fortran
(00)
C++
Smal | t al k
Si mul a

® Read itin, preserving the structure:

["Languages",
["Functional", ["Haskell" 17,
[“I'mperative", ["C', "Fortran"] 1,
["o0', ["C++", "Smalltalk", "Sinula"]]]

® The same set of tools does many different jobs

Copyright © 2007 M. .
Dominus

Warnings

® | had to leave out a lot of crucial details
® Recursive descent parsers nbacktracking
O | completely ignored this important issue
® The operator overloading is not as simple as | pretended
® Etc.

® But | don'’t think | misled you too badly

Copyright © 2007 M. .
Next ViIFEE: Domints

Next Higher-Order Parsing 37 Next

Higher-Order Perl Thank You!

® | wrote a book about functional programming technia HI1GHER ® Any questions?
in Perl ORDER

O It was published in 2005 by Morgan Kaufmann PERL Next

® |t's a really good book
(http://hop.perl.plover.com/reviews.html)

® Chapter 8, on parsing, is 90 pages long
O | had to leave out a lot of good stuff for this talk

http://hop. perl.pl over.conml

® Eventually it will be available online

O Meantime, source code is at:

http://hop. perl.pl over.com Exanpl es/ Chap8/

Copyright © 2007 M. .
Next ViIFEE: Dorints

Higher-Order Parsing

VIFESE:

38

Copyright © 2007 M. .
Dominus

Next Higher-Order Parsing 39 Next Higher-Order Parsing 40

Bonus dlides L exing
® | prepared 90 minutes’ worth of material for this 60-minute talk ® Lexing is mostly a matter of simple pattern matching
® Here is the stuff | cut out to make room ® We build a scanner that works its way through the input string a character at .

® |t executes a state machine
o Dominus @ \When the state machine indicates that a complete token has been read, the |

returns the token
® In C, we can also use the prograex to generate the state machine

® In Perl, we usually use regular expressions

Copyright © 2007 M. .
Next VicEE: Dorints

Next Higher-Order Parsing

Recur sive-descent parsing
® |dea: each grammar rule becomes a function
® A parser function gets the current token list as an argument
O It can examine the tokens at the head of the list
O It can pass all or part of the list to another parser
O If it likes what it sees, it returns a success value

O In this case, it informs its caller of how many tokens it consumed from thq
input

B Probably by returning a suitable suffix of the original list

ViIFEE:

Copyright © 2007 M. .

Next Dominus

41 Next

Higher-Order Parsing 42

L abeled blocks

® Lately my big project has been a constraint-oriented drawing system called
i nogram

® The input language contains constructions like:
constraints { ... }
® And:
define square extends rectangle { ... }
® So | use an even higher-level parser constructor:

sub | abel ed_bl ock {

ny ($header, $item $separator) = @;
$separator = lookfor(";") unless defined $separator;
conc($header,

| ookfor("{"),

list_of ($item $separator),
I ookfor("}"));
}

® And define really complex parsers with it:

$constraint _bl ock =

| abel ed_bl ock(L(" CONSTRAI NTS"), $constraint);

$definition =
| abel ed_bl ock($Defi ni ti on_header,

ViIcEE:

$decl aration);

Copyright © 2007 M. .

Next Dominus

Next Higher-Order Parsing 43

Open systems again
® Sorry to keep harping on this, but I think it's important
1. By providing a few interchangeable parts, we enable not only powerful p
® But ways to buildools to buildeven more powerful parsers
2. Since the tools themselves are simple, it's easy to make new ones

m A small amount of effort put into new tools pays off big

ViIFEE:

Copyright © 2007 M. .

Next Dominus

Next Higher-Order Parsing

r epeat
® Many rules are naturally expressed in terms of "repeated" items

® For example, we might write

termé→
$term = $Factor -

factor repeat("*" factor)
repeat (L("*") - $Factor);

® |t's not hard to expresspeat with what we have already:
repeat ($p) is:

$p - repeat($p) | $nothing
® But we can wrap this up as a function:

sub repeat {

ny $p = shift;

ny $repeat_p;

ny $do_repeat_p = sub { $repeat_p->(@) }; # proxy
$repeat _p = alt(conc($p, $do_repeat_p), $nothing);

return $repeat_p;

Copyright © 2007 M. .

Next Dominus

VISESE:

