
Next Higher-Order Parsing 1

Parsing systems in functional
programming languages

Mark Dominus

Plover Systems Co.

 mjd-perl-hop@plover.com

Version 1.0

February, 2007

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 2

Warning
Code examples in this talk will be in Perl

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 3

Warning
This is about functional programming languages

SML, Haskell, Perl, etc.

A lot of this stuff will be difficult or impossible in C, Java, etc.

Too bad

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 4

Parsing
Parsing is the process of taking an unstructured input

Such as a sequence of characters

and turning it into a data structure

Such as a record

or an object

or a value

For example, read a configuration file

build an object that represents the configuration

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 5

Every program parses
This is a rudimentary parser:

 while (read a line of input) {
 # do something with it
 }

The program must here convert an unstructured character stream into a sequence of
lines

As the input you’re parsing becomes more complicated, the code becomes more
elaborate

At some point it may exceed your ability to keep up with ad-hoc mechanisms

So we have parsing systems like yacc and Parse::RecDescent

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 6

Open vs. closed systems
Some people like closed systems

The system should just do all the stuff you need it to

It should have a feature for every use-case

You should be able to use it without understanding what it is doing

Example: Microsoft Windows

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 7

Open vs. closed systems
I prefer open systems

The system should provide modules for doing simple common things

The modules should be composable into specialized assemblages

It should be possible to assemble a solution for every use-case

It should be easy to build new modules

Example: Unix

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 8

Open vs. closed systems
Benefit of open systems:

Flexible, powerful, unlimited

Drawback:

Requires more understanding

We’re going to see an open one, HOP::Parser

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 9

Example: graphing program
Suppose we want to read a web user’s input

It will be a mathematical function, like

 (x^2 + 3*x)* sin(x * 2) + 14

We will emit a web page with a graph of their function

In Perl, there is an easy solution:

Use eval to turn the input string into compiled Perl code

You could imagine something similar for almost any language:

Write out a source code file with a suitable function in it

Embed the user input in the appropriate place in the file

Compile the file and execute the resulting binary

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 10

Example: graphing program
In Perl:

 my $function = eval $code;
 my $y = $function->($x);

I don’t need to explain all the things that can go wrong here, do I?

Even if it could be made safe, it has some problems:

 (x^2 + 3*x)* sin(x * 2) + 14

In Perl, ̂ means bitwise exclusive or

Not exponentiation

Alternative: implement an evaluator for expressions

Then we can give any notation any meaning we want

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 11

Grammars
 atom → NUMBER | VAR | FUNCTION "(" expression ")"

 factor → atom ("^" NUMBER | nothing)

 term → factor ("*" term | nothing)

 expression → "(" expression ")"
 | term ("+" expression | nothing)

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 12

Lexing
First, our program must identify things like NUMBER

Idea: preprocess the input

Turn it from a character string into a list of tokens

Each token is an atomic piece of input

Examples: sin, x, +, 12345

Humans do this when they read

First, turn the sequence of characters into a sequence of words

Then, try to understand the structure of the sentence based on meanings of
words

This is called lexing

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 13

Lexing
I will omit the arcane but tedious details of building a lexer

See for example The Unix Programming Environment by Kernighan and Pike

We will assume that the lexer returns tokens like this:

 1234 ["NUMBER", 1234]
 sqrt ["FUNCTION", "sqrt"]
 x3 ["VAR", "x3"]
 ^ ["^"]
 ** ["^"]
 + ["+"]
 * ["*"]
 (["("]
) [")"]

Notice how the lexer can recognize both ^ and ** and eliminate the distinction

This saves work in the parser

Also notice that ** is lexed as a power operator, not as two multiplication signs

We will imagine that our lexer scans the entire input immediately

Returns a linked list of all tokens

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 14

Recursive-descent parsing
Each grammar rule has a corresponding function

The job of the function expression() is to parse an expression

If it succeeds, it returns a data structure representing the expression

If not, it returns a failure indication

Suppose you have a rule like this:

 expression → "(" expression ")"
 | term ("+" expression | nothing)

You will have functions called expression() and term()

expression() gets the token list as an argument

It looks to see if the next token is (

If so, it calls itself recursively, and then looks for the)

Otherwise it calls term() to look for a term

If term() fails, expression() does too

Otherwise it looks to see if there’s a + sign and another expression

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 15

Recursive-descent parsing
The description on the previous slide sounds complicated

But there are only a few fundamental operations:

Look for a certain token

Look for either of x or y

Look for x followed by y

Look for nothing

A HOP::Parser parser will be a function that takes a token list

It examines some tokens

If it likes what it sees, it constructs a value

Then it returns the value and a list of the remaining tokens

Otherwise, it returns undef (Perl "null" value)

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 16

Basic parsers
 expression → "(" expression ")"
 | term ("+" expression | nothing)

The simplest parser is the one that corresponds to nothing

It consumes no tokens and always succeeds:

 sub nothing {
 my $tokens = shift;
 return (undef, $tokens);
 }

This parser function gets a token list

It examines the tokens

Returns a value and a new token list

The undef here is a dummy value

The new token list is the same as the old one

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 17

Token parsers
The next simplest parser looks for a particular token:

 sub lookfor_PLUS {
 my $tokens = shift;
 my $tok = first($tokens);
 if ($tok->type eq "+") {
 return ("+", rest($tokens));
 } else {
 return; # failure
 }
 }

 sub lookfor_NUMBER {
 my $tokens = shift;
 my $tok = first($tokens);
 if ($tok->type eq "NUMBER") {
 return ($tok->value, rest($tokens));
 } else {
 return; # failure
 }
 }

Note that the "value" returned by lookfor_NUMBER is the value of the number token
it finds

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 18

Token parsers
In functional languages, we needn’t write write 9 similar lookfor functions

Instead, we can have another function build them as required:

 sub lookfor {
 my $target = shift;
 my $parser =
 sub {
 my $tokens = shift;
 my $tok = first($tokens);
 if ($tok->type eq $target) {
 return ($tok->value, rest($tokens));
 } else {
 return; # failure
 }
 };
 return $parser;
 }

Now instead of lookfor_PLUS we just use lookfor("+")

Instead of lookfor_NUMBER we just use lookfor("NUMBER")

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 19

Concatenation
Let’s pretend for a bit that atom has only this one rule:

 atom → "FUNC" "(" expression ")"

We could write atom() like this:

 sub atom {
 my $t1 = shift;
 my ($expr, $t2, $t3, $t4, $t5);

 if (($funcname, $t2) = lookfor("FUNC")->($t1)
 && (undef, $t3) = lookfor("(")->($t2)
 && ($expr, $t4) = expression($t3)
 && (undef, $t5) = lookfor(")")->($t4)) {
 my $val = something involving $funcname and $expr;
 return ($val, $t5);
 } else {
 return; # failure
 }
 }

Most of our parser functions would look something like this

So instead we’ll write a function that assembles small parsers into big ones

Given parser functions A, B, etc.:

 conc(A, B, ...)

Will return a parser function that looks for A, then B, etc.

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 20

Concatenation
 sub conc {
 my @p = @_;
 my $parser = sub {
 my $tokens = shift;
 my @results;
 for my $p (@p) {
 my ($result, $t_new) = $p->($tokens)
 or return; # failure
 push @results, $result;
 $tokens = $t_new;
 }

 # all parsers succeeded
 return (\@results, $tokens);
 };
 return $parser;
 }

With this definition, atom simply becomes:

 $atom = conc(lookfor("FUNC"),
 lookfor("("),
 $expression,
 lookfor(")"),
);

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 21

Concatenation
Similarly, the rule

 expression → "(" expression ")"

Translates to:

 $expression = conc(lookfor("("),
 $expression,
 lookfor(")"),
);

Oops, no, not quite

In better functional languages, this is no problem

Even in Perl, this is fixable—but I don’t have time to fix it

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 22

Alternation
Atoms come in three varieties, not just one:

 atom → NUMBER | VAR | function "(" expression ")"

So we need the atom parser to try these three different things

It fails only if the upcoming tokens match none of them

Something like this:

 sub atom {
 my $in = shift;
 my ($result, $out);
 my $alt3 = conc(lookfor("FUNC"),
 lookfor("("), $Expression, lookfor(")"),
);

 if (($result, $out) = lookfor("NUMBER")->($in)) {
 return ($result, $out);
 } elsif (($result, $out) = lookfor("VAR")->($in)) {
 return ($result, $out);
 } elsif (($result, $out) = $alt3->($in)) {
 return ($result, $out);
 } else {
 return;
 }
 }

But again, we’d have to write a lot of code that was very similar

So instead we’ll write a function that assembles small parsers into big ones

Given parser functions A, B, etc.:

 alt(A, B, ...)

Will return a parser function that looks for A or for B, etc.

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 23

Alternation
 sub alt {
 my @p = @_;
 my $parser = sub {
 my $in = shift;
 for my $p (@p) {
 if (my ($result, $out) = $p->($in)) {
 return ($result, $out);
 }
 }
 return; # failure
 };
 return $parser;
 }

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 24

Parsers
With this definition, a complete definition of atom() is:

 $atom = alt(lookfor("NUMBER"),
 lookfor("VAR"),
 conc(lookfor("FUNC"),
 lookfor("("),
 $Expression,
 lookfor(")"),
));

Similarly, here’s factor():

 # factor → atom ("^" NUMBER | nothing)

 $factor = conc($Atom, alt(conc(lookfor("^"),
 lookfor("NUMBER")),
 \¬hing));

Here’s term():

 # term → factor ("*" term | nothing)

 $term = conc($Factor, alt(conc(lookfor("*"), $Term),
 \¬hing));

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 25

Parsers
Here’s expression():

 # expression → "(" expression ")"
 # | term ("+" expression | nothing)

 $expression = alt(conc(lookfor("(")),
 $Expression,
 lookfor(")"),

 conc($Term,
 alt(conc(lookfor("+"), $Expression),
 \¬hing));

This doesn’t look great, but:

1. When you consider how much it’s doing, it’s amazingly brief, and

2. We can use operator overloading and rewrite it as:

 $expression = L("(") - $Expression - L(")")
 | $Term - (L("+") - $Expression | $nothing);

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 26

Overloading
 # expression → "(" expression ")"
 # | term ("+" expression | nothing)

 $expression = L("(") - $Expression - L(")")
 | $Term - (L("+") - $Expression | $nothing);

This looks almost exactly like the grammar rule we’re implementing

But it’s actually Perl code, not a limited sub-language

We can do similar tricks in SML or Haskell

I’ll use this notation from now on

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 27

Parsers
So far we’ve done a bunch of work to build a parser system

It has some modular, interchangeable parts

We can use these to manufacture all kinds of parsers

Our system is only getting started

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 28

Optional items
Many rules are naturally expressed in terms of "optional" items

Instead of:

 term → factor ("*" term | nothing)

We might want to say something like:

 term → factor optional("*" term)

We can define optional quite easily:

 sub optional {
 my $p = shift;
 return alt($p, $nothing);
 }

Now this:

 $term = $Factor - (L("*") - $Term | $nothing);

Becomes this:

 $term = $Factor - optional(L("*") - $Term);

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 29

repeat

Many rules are naturally expressed in terms of "repeated" items

For example, we might write

 # term → factor repeat("*" factor)
 $term = $Factor - repeat(L("*") - $Factor);

It’s not hard to express repeat with what we have already:

 # repeat($p) is:

 $p - repeat($p) | $nothing

But we can wrap this up as a function:

 sub repeat {
 my $p = shift;
 my $repeat_p;
 my $do_repeat_p = sub { $repeat_p->(@_) }; # proxy
 $repeat_p = alt(conc($p, $do_repeat_p), $nothing);
 return $repeat_p;
 }

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 30

Lists
Comma-separated expression lists are common in programming languages

Similarly semicolon-separated statement blocks

Or ...

 sub list_of {
 my ($item, $separator) = @_;
 $separator = lookfor("COMMA") unless defined $separator;
 conc($item, repeat($separator, $item), optional($separator));
 }

Now comma-separated lists:

 $list = conc(lookfor("("),
 list_of($Expression),
 lookfor(")"));

Semicolon-separated statement blocks:

 $block = conc(lookfor("{"),
 list_of($Statement, lookfor(";")),
 lookfor("}"));

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 31

Operators
Parsing arithmetic-type expressions is not too uncommon

A useful utility is an operator function:

 $expression =
 operator($Term, [lookfor([’OP’, ’+’]), sub { $_[0] + $_[1] }],
 [lookfor([’OP’, ’-’]), sub { $_[0] - $_[1] }]);

 $term =
 operator($Factor, [lookfor([’OP’, ’*’]), sub { $_[0] * $_[1] }],
 [lookfor([’OP’, ’/’]), sub { $_[0] / $_[1] }]);

This little bit of code writes a function that parses an input like 2 + 3 * 4 and
calculates the result (14)

For technical reasons, getting - and / to work requires some tricks

The complications are encapsulated inside of operator

We don’t have to worry about them

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 32

New tools
We’ve built all this up just by gluing together a very few basic tools:

 lookfor()
 conc()
 alt()

But the tools themselves are simple

only about 25 lines of code, total

If we need some new tool, we can build it

For example, "look for A, but only if it doesn’t also look like B":

 sub this_but_not_that {
 my ($A, $B) = @_;
 my $parser = sub {
 my $in = shift;
 my ($res, $out) = $A->($in)
 or return;
 if ($B->($in)) { return; }
 return ($res, $out);
 };
 return $parser;
 }

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 33

New tools
Or "do what A does, but transform its result value somehow":

 sub transform {
 my ($A, $transform) = @_;
 my $parser = sub {
 my $in = shift;
 my ($res, $out) = $A->($in)
 or return;
 return ($transform->($res), $out);
 };
 }

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 34

New tools
Or "do what A does, but only if the result satisfies some condition":

 sub side_condition {
 my ($A, $condition) = @_;
 my $parser = sub {
 my $in = shift;
 my ($res, $out) = $A->($in)
 or return;
 unless ($condition->($res)) { return; }
 return ($res, $out);
 };
 }

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 35

New tools
In my book Higher-Order Perl, I put the same tools to work parsing very different
sorts of input

Example: Take an outline:

 . Languages
 . Functional
 . Haskell
 . Imperative
 . C
 . Fortran
 . OO
 . C++
 . Smalltalk
 . Simula

Read it in, preserving the structure:

 ["Languages",
 ["Functional", ["Haskell"]],
 ["Imperative", ["C", "Fortran"]],
 ["OO", ["C++", "Smalltalk", "Simula"]]]

The same set of tools does many different jobs

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 36

Warnings
I had to leave out a lot of crucial details

Recursive descent parsers need backtracking

I completely ignored this important issue

The operator overloading is not as simple as I pretended

Etc.

But I don’t think I misled you too badly

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 37

Higher-Order Perl
I wrote a book about functional programming techniques
in Perl

It was published in 2005 by Morgan Kaufmann

It’s a really good book
(http://hop.perl.plover.com/reviews.html)

Chapter 8, on parsing, is 90 pages long

I had to leave out a lot of good stuff for this talk

 http://hop.perl.plover.com/

Eventually it will be available online

Meantime, source code is at:

 http://hop.perl.plover.com/Examples/Chap8/

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 38

Thank You!
Any questions?

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 39

Bonus slides
I prepared 90 minutes’ worth of material for this 60-minute talk

Here is the stuff I cut out to make room

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 40

Lexing
Lexing is mostly a matter of simple pattern matching

We build a scanner that works its way through the input string a character at a time

It executes a state machine

When the state machine indicates that a complete token has been read, the lexer
returns the token

In C, we can also use the program lex to generate the state machine

In Perl, we usually use regular expressions

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 41

Recursive-descent parsing
Idea: each grammar rule becomes a function

A parser function gets the current token list as an argument

It can examine the tokens at the head of the list

It can pass all or part of the list to another parser

If it likes what it sees, it returns a success value

In this case, it informs its caller of how many tokens it consumed from the
input

Probably by returning a suitable suffix of the original list

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 42

Labeled blocks
Lately my big project has been a constraint-oriented drawing system called
linogram

The input language contains constructions like:

 constraints { ... }

And:

 define square extends rectangle { ... }

So I use an even higher-level parser constructor:

 sub labeled_block {
 my ($header, $item, $separator) = @_;
 $separator = lookfor(";") unless defined $separator;
 conc($header,
 lookfor("{"),
 list_of($item, $separator),
 lookfor("}"));
 }

And define really complex parsers with it:

 $constraint_block =
 labeled_block(L("CONSTRAINTS"), $constraint);

 $definition =
 labeled_block($Definition_header, $declaration);

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 43

Open systems again
Sorry to keep harping on this, but I think it’s important

1. By providing a few interchangeable parts, we enable not only powerful parsers

But ways to build tools to build even more powerful parsers

2. Since the tools themselves are simple, it’s easy to make new ones

A small amount of effort put into new tools pays off big

Next Copyright © 2007 M. J.
Dominus

Next Higher-Order Parsing 44

repeat

Many rules are naturally expressed in terms of "repeated" items

For example, we might write

 # term → factor repeat("*" factor)
 $term = $Factor - repeat(L("*") - $Factor);

It’s not hard to express repeat with what we have already:

 # repeat($p) is:

 $p - repeat($p) | $nothing

But we can wrap this up as a function:

 sub repeat {
 my $p = shift;
 my $repeat_p;
 my $do_repeat_p = sub { $repeat_p->(@_) }; # proxy
 $repeat_p = alt(conc($p, $do_repeat_p), $nothing);
 return $repeat_p;
 }

Next Copyright © 2007 M. J.
Dominus

